
LÉVY PROCESSES - LECTURE 1

ADAM ANDERSSON

1. basic notions of Probability theory

A probability space (Ω,F ,P) is a measure space for which P(Ω) = 1. By a random variable
we mean a measurable function

X : Ω→ R,

We define the law, or distribution of X as the measure on R, given by L(X) = P ◦X−1, where
X−1(A) denotes the inverse image of A under X, for A ∈ BR. Often this law is absolutely
continuous with respect to the Lebesgue measure and we then refer to the Radon-Nikodym
derivative as a probability density function. By the expected value of a random variable X we
mean

E[X] =

∫
Ω

X(ω) dP(ω).

Often we allow ourself to write EX when no confusion arises. The variance of X is defined as

Var(X) = E[(X −EX)2] = E[X2]−E[X]2

and the covariance of two random variables X and Y as

Cov(X,Y ) = E[(X −EX)(Y −EY )].

Lebesgue spaces Lq(Ω) are defined as the equivalence classes of random variables X that satisfies
E[|X|q] <∞. Here X and Y belong to the same equivalence class if E[|X − Y |q] = 0.

A set A ∈ F is called an event. An event A is said to happen almost surely if P (A) = 1. A
collection (An)n∈N ⊂ F of events are called independent if for any distinct Ai1 , . . . , Ain

P(Ai1 , . . . , Ain) =

n∏
i=1

P(Aij ).

A family of stochastic variables (Xn)n∈N is said to be independent if all the events X−1
n (An) are

independent for all possible choices of (An)n∈N ⊂ BR. Independence of X,Y ∈ L1(Ω) implies
that

E[XY ] = E[X]E[X].

By a stochastic process we mean a family of random variables (X(t))t∈T , where T is some
set, often T = [0,∞). In the latter case the trajectory t 7→ X(t) models random evolution in
time. Two stochastic processes are called modifications of each others if

P(X(t) 6= Y (t)) = 0, for all t ∈ T.

We follow the probabilistic convention to call the Fourier transform of the probability law its
characteristic function. Let X be a random variable and ν its law. Its characteristic function is

φ(u) = E[eiuX ] =

∫
R

eiux dν(x).
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2. Brownian motion

Let T = [0,∞). A stochastic process (Bt)t∈T on a probability space (Ω,F ,P) is called a
Brownian motion if

W1: B(0)=0, almost surely;
W2: B has independent and centered Gaussian increments with

Cov(B(t), B(s)) = min(s, t), for s, t ∈ T ;
W3: B has continuous paths, almost surely.

There are several ways how to construct a Brownian motion. We will sketch one that takes
as the starting point a sequence (ξn)n∈N of independent standard normal random variables on
a probability space (Ω,F ,P). It is a sketch since we evoke two deep theorems, both due to
Kolmogorov, without proof. We choose this approach since we will get the Wiener integral
for free out of it. This is the Itô integral with integrands not depending on ω ∈ Ω. Let
L2(Ω) = L2(Ω,F ,P; R) be the space of real valued square integrable random variables. The
sequence (ξn)n∈N is an orthonormal set of L2(Ω). Indeed, by the independence and the zero
mean Eξiξj = EξiEξj = 0, for i ≤ j and since ξi has unit variance E|ξi|2 = 1, for all i ∈ N.
Define the mapping

I : L2(T )→ L2(Ω), f 7→
∑
n∈N

ξn〈ei, f〉L2(T ),

where (en)n∈N ⊂ L2(T ) is an ON-basis. It is clearly well defined and is also an isometry since,
for f ∈ L2(T ), by Parseval’s identity
(2.1)

E|I(f)|2 = E
∣∣∣ ∑
n∈N

ξn〈en, f〉L2(T )

∣∣∣2 =
∑
n∈N

E|ξn|2|〈en, f〉L2(T )|2 =
∑
n∈N

|〈en, f〉L2(T )|2 = ‖f‖2L2(T ).

More generally, for f, g ∈ L2(T ), by an application of the dominated convergence theorem

E[I(f)I(g)] = E
∑

m,n∈N

ξmξn〈em, f〉L2(T )〈en, g〉L2(T ) =
∑

m,n∈N

Eξmξn〈em, f〉L2(T )〈en, g〉L2(T )

=
∑
n∈N

〈en, f〉L2(T )〈en, g〉L2(T ) =
〈 ∑
n∈N

〈en, f〉L2(T )en, g
〉
L2(T )

= 〈f, g〉L2(T )

(2.2)

The random variable I(f) is for every f ∈ L2(T ), as an L2(Ω)-limit of normal random variables,
normal and from (2.1),

(2.3) I(f) ∼ N(0, ‖f‖L2(T )), ∀f ∈ L2(T ).

Let 1[0,t] be the indicator function that takes the value 1 in [0, t] and is 0 in (t,∞). We claim
that B(t) = I(1[0,t]) is a Brownian motion. Clearly W1 is satisfied since 1[0,0] = 0 implies
B(0) = I(1[0,0]) = 0, for all ω ∈ Ω. We verify W2, using the isometry (2.2). For s, t ∈ T

Cov(B(s), B(t)) = EB(s)B(t) = EI(1[0,s])I(1[0,t]) = 〈1[0,s],1[0,t]〉 =

∫ min(s,t)

0

dr = min(s, t).

So far it has been easy for us. For the continuity W3 we need the following theorem. Its proof
will not be presented since our objective further on is to study processes with jumps.

Theorem 2.1 (Kolmogorov’s continuity criterion). Let (X(t))t∈T be a real valued stochastic
process such that there exists positive constants α, β and C such that

(2.4) E(|X(t2)−X(t1)|α) ≤ C|t2 − t1|1+β

for all t1, t2 ∈ T . Then there exists another stochastic process (X̃(t))t∈T such X̃(t) = X(t)

almost surely, for all t ∈ T , and such that the paths t 7→ X̃(t) is, almost surely, Hölder continuous

with exponent γ, for every γ ∈ (0, βα ).

We prove W3 for B, by verifying (2.4) with constants α = 2n, β = n − 1 and Cn > 0.
From the definition it follows that f 7→ I(f) is linear. Thus, B(t)− B(s) = I(1(s,t]) and hence



LÉVY PROCESSES - LECTURE 1 3

B(t)−B(s) ∼ N(0, ‖1(s,t]‖L2(T )) = N(0, t− s) from (2.1). We calculate the 2nth moments, for
n ∈ N using this fact. First

E|B(t)−B(s)|2n =

∫
R

x2ne−
x2

2(t−s)
dx√

2π(t− s)

and by the change of variable x = y
√
t− s we get that

E|B(t)−B(s)|2n =

∫
R

y2ne−
y2

2
dy√
2π

(t− s)n = (2n− 1)! (t− s)n.

Thus there exist a process (B̃(t))t∈T that is a modification of (B(t))t∈T , in the sense of Theorem
2.1, that satisfies W1-W3, and has almost surely Hölder continuous paths with exponent γ, for
every γ ∈ (0, 1

2 ). We denote the continuous modification B̃ by B from now on and let it be our
Brownian motion. We conclude with a theorem

Theorem 2.2. The paths t 7→ B(t) of a Brownian motion B are almost surely Hölder continu-
ous, for any exponent γ ∈ (0, 1

2 ), i.e.,

P
(

sup
s6=t

|B(t)−B(s)|
|t− s|γ

≤ δ
)

= 1

for some δ > 0 large enough.

Theorem 2.3. There exist a probability space (Ω,F ,P) that admits the existence of Brownian
motion.

Proof. All we need is the existence of a probability space admitting a countable sequence of
independent standard normal random variables. Let Ω = R∞ = {(ω1, ω2, ω3, . . . ) : ωn ∈ R}.
By Λ ⊂ P(N) we denote the collection of sets A = (a1, . . . , an) ⊂ N, n ∈ N, that has cardinality
|A| <∞. For A ∈ Λ we denote by πA the projection R∞ → R|A| given by

ω 7→ (ωa1 , . . . , ωa|A|),

where a1, . . . , a|A| ∈ A is taken in increasing order. Let C be the algebra (closed under finite

unions and intersections) of all subsets of R∞, that are obtained as the inverse image π−1
A (B)

of B ∈ B(R|A|), i.e.,

C = {π−1
A (B) : A ∈ Λ, B ∈ B(R|A|)}.

All random variables of the form F = f(ωi1 , . . . , ωin) are measurable with respect to C. It makes
sense to choose the σ-algebra F = σ(C), generated by C for Ω. With respect to F all random
variables F = f(ω1, ω2, . . . ), depending on the whole range of ωn, n ∈ N are measurable.

We define a family of finite dimensional distributions, indexed by Λ, by PA = γ|A|, where

dγ|A|(x) = (2π)−
|A|
2 e−

|x|2
2 dx.

Kolmogorov’s extension theorem, see Theorem 10.18 in [2] or Theorem 2.2, p.50 in [4], guarantees
the existence of of a probability measure P that agrees with the finite dimensional distributions,
in the sense that P ◦ π−1

A = PA. It will be stated and proved during the next lecture. �

Those already familiar with stochastic analysis are perhaps amused to see a very simple proof
of the Cameron-Martin theorem. Those how have never seen this theorem before will not suffer
by proceed to the next section. A counterpart of this theorem, for Lévy processes is given in
Chapter 5 of [1] but will not be treated in the course.

Theorem 2.4 (The Cameron-Martin Theorem). Let (B(t))t∈T be a Brownian motion on a
probability space (Ω,F ,P). Then, for f ∈ L2(T ) the process

B̃(t) = B(t) +

∫ t

0

f(s) ds

is a Brownian motion under the probability measure Q, having Radon-Nykodym derivative

dQ

dP
= exp

(
I(f)− 1

2
‖f‖2

)
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Proof. Using that B(t) = I(1[0,t]) and a Fourier expansion of f yields

B̃(t) = I(1[0,t]) + 〈f,1[0,t]〉

=
∑
n∈N

ξn〈en,1[0,t]〉+
〈 ∑
n∈N

〈en, f〉en,1[0,t]

〉
=
∑
n∈N

[ξn + 〈en, f〉]〈en,1[0,t]〉.

If we can change the measure so that ξn + 〈en, f〉 ∼ N(0, 1), for each n ∈ N, then B̃ is a
Brownian motion with respect to the new measure. The probability density function of each
ξn + 〈en, f〉 is

1√
2π

exp
(
− (x− 〈en, f〉)2

2

)
=

1√
2π

exp
(2x〈en, f〉 − |〈en, f〉|2

2

)
exp

(
− x2

2

)
.

Thus, under the measure

exp
(
ξn〈en, f〉 −

1

2
|〈en, f〉|2

)
dP

we have ξn + 〈en, f〉 ∼ N(0, 1) and with

dQ

dP
=
∏
n∈N

exp
(
ξn〈en, f〉 −

1

2
|〈en, f〉|2

)
= exp

(
I(f)− 1

2
‖f‖2

)
ξn + 〈en, f〉 ∼ N(0, 1) under Q, for every n ∈ N. �

3. The Wiener integral

In this section a first example of a stochastic integral is presented, the Wiener integral. For
that purpose consider a simple function

f =

N−1∑
n=1

an1[tn,tn+1),

where 0 ≤ t1 < t2 < . . . tN <∞ and a1, . . . , aN ∈ R. Then, by the linearity of I

I(f) =

N−1∑
n=1

anI(1[tn,tn+1)) =

N−1∑
n=1

an(B(tn+1)−B(tn)).

It therefor makes sense to write it as a Riemann-Stiltjes integral with f as integrand and B as
the integrator, i.e.,

I(f) =

∫ ∞
0

f(t) dB(t).

This integral is known as the Wiener integral. Notice that it is perfectly well defined for all
f ∈ L2(T ) since I is. No limiting argument is needed. One can prove that Brownian motion
has, almost surely, infinite variation and is therefore not a suitable integrator in the usual sense.
We state some important properties of the Wiener integral.

Theorem 3.1. For all f, g ∈ L2(T ) and α, β ∈ R the following properties for the Wiener intgral
holds:

Linearity:
∫∞

0
(αf(t) + βg(t)) dB(t) = α

∫∞
0
f(t) dB(t) + β

∫∞
0
g(t) dB(t)

Wiener’s isometry: E
[ ∫∞

0
f(t) dB(t)

∫∞
0
g(t) dB(t)

]
= 〈f, g〉L2(T )

Normality:
∫∞

0
f(t) dB(t) ∼ N(0, ‖f‖2L2(T )), for all f ∈ L2(T )

Proof. The linearity is obvious. The Wiener Isometry is nothing but (2.2) and the normality
(2.3). �



LÉVY PROCESSES - LECTURE 1 5

Remark 3.2. We have developed a theory of stochastic integration with respect to deterministic
integrands. When the integrand is a stochastic process, with the suitable integrability conditions,
the theory is much more involved. The stochastic integral is then called the Itô integral and
we refer the reader to books on this subject, see for instance [4]. Since the above construction
is a special case of the Itô theory this simple construction is seldom presented, but still very
instructive.

4. Poisson processes

A random varable X with probability density function f(t) = λe−λt, for λ > 0, is called
exponential with intensity λ, written

X ∼ exp(λ).

It has mean EX = λ−1 and variance Var(X) = λ−2. The exponential distribution has the
following nice property:

(4.1) P(X ∈ [t, t+ h]|X ≥ t) =
λ
∫ t+h
t

e−λs ds

λ
∫∞
t
e−λs ds

=
e−λt − e−λ(t−h)

e−λt
= 1− e−λh = λh+ o(h),

for all t ≥ 0. This is often referred to as the lack of memory property. If X is the time until
a light bulb breaks, and we want to predict its future life time after a time t > 0, then it only
matter if it is working at the time t; its further history is irrelevant.

Let (Xn)n∈N be a sequence of independent and exponentially distributed random variables
with common intensity λ and let Tn =

∑n
i=1Xi. Let (N(t))t≥0 be the stochastic process that

satisfies N(0) = 0, stays constant a time T1 and jump to N(T1) = 1, stays constant a time X2

and make a jump N(T2) = N(X1 +X2) = 2 and so on. We make the formal definition:

N(t) = max{n : Tn ≤ t}.
The process (N(t))t≥0 is called a Poisson process with intensity λ > 0.

A discrete random variable Y is called Poisson distributed, with parameter λ > 0, if it satisfies

P(Y = n) =
λn

n!
e−λ, n = 0, 1, 2, . . .

One can prove that N(t) is Poisson distributed with parameter λt. For more about Poisson
processes see [3].

5. Lévy processes

A process (X(t))t≥0 is said to have stationary increments if for every 0 < s < t, the increment
X(t) − X(s) has the same law as X(t − s) − X(0). A stochastic process (L(t))t≥0 is called a
Lévy process if

L1: L(0)=0, almost surely;
L2: L has independent and stationary increments;
L3: L is stochastically continuous, in the sense that, for all a > 0 and for all s ≥ 0

lim
t→s

P(|X(t)−X(s)| > a) = 0.

The notion of stochastic continuity is a rather weak one. It includes processes with jumps but
tells that the probability of a jump at any given time t ≥ 0 is zero.

Example 5.1. Brownian motion is a Lévy process. Indeed, W1 and L1 are the same, W2 is
a special case of L2 and obviously the continuity W3 is stronger than the notion of stochastic
continuity of L3.

Example 5.2. The linear deterministic process L(t) = ct, for c > 0 is a Lévy process.

Example 5.3. The Poisson process (N(t))t≥0, with intensity λ > 0, is a Lévy process. First, L1
is a part of the definition. For 0 < s < t, the process (N(t)−N(s))t≥s is a new Poisson process
with the same λ, except for the starting time. This holds due to the lack of memory property
of exponential random variables. More precisely the time to the first jump of N(t) − N(s) is
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exp(λ) distributed, even if time has elapsed since the jump just prior to s. Next, N(t) −N(s)
has the same distribution as that of N(t− s), for all s < t, since that too, of cause, is a Poisson
process with the same intensity. Therefore L2 is satisfied. For L3 we notice, from (4.1), that
the following holds:

P(N(t+ h) = n+m |N(t) = n) =

 λh+ o(h), if m = 1,
o(h), if m > 1,
1− λh+ o(h), if m = 0.

For every n ∈ N, m ≥ 1 this probability tends to 0 as we let h → 0. This is the stochastic
continuity.
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