
1. Calculus on Gaussian Spaces

Malliavin calculus is about calculus on Gaussian Sobolev Spaces. It is instruc-
tive to start with Gaussian measures on n-dimensional Euclidean space. We will
quickly encounter the important operators of Malliavin calculus, the gradient, the
divergence and the Ornstein-Uhlenbeck operator. Let C∞p (Rn), be the set of all
infinitely differentiable functions with polynomial growth on Rn. We let νn denote
the standard Gaussian measure on Rn, i.e.,

dνn(x) = (2π)−
n
2 e−〈x,x〉/2dx.

Since polynomials are integrable with respect to Gaussian measures, C∞p (Rn) is a
suitable class of functions. In probabilistic terms this is equivalent to the fact that
Gaussian random variables have finite moments of any order. Let f ∈ C∞p (Rn)
and g = (g1, . . . , gn) be a smooth vector field with gi ∈ C∞p (Rn), i = 1, . . . , n.
We use the notation ∂i for partial derivatives, ∇ = (∂1, . . . , ∂n) for the gradient
and ∆ =

∑n
i=1 ∂

2
i for the Laplace operator. The divergence is defined by ∇ · g =∑n

i=1 ∂igi. What is the adjoint operator of ∇, acting on the vector field g under a
Gaussian measure? Using integration by parts in one variable at a time we obtain

∫
Rn

∇f(x) · g(x) dνn(x)

=
n∑
i=1

∫
Rn−1

∫
R
∂if(x1, . . . , xi, . . . , xn)gi(x1, . . . , xi, . . . , xn)e−x

2
i /2 dxi

× e−
∑

k 6=i x
2
k/2
dx1 · · · dxi−1dxi+1 · · · dxn

(2π)n/2

=

∫
Rn

f(x)
n∑
i=1

[xigi(x)− ∂igi(x)] dνn(x)

=

∫
Rn

f(x)[x · g(x)−∇ · g(x)] dνn(x)

:=

∫
Rn

f(x)δng(x) dνn(x).

(1.1)

The operator

(1.2) δng(x) := x · g(x)−∇ · g(x).

is called the divergence and acts as the adjoint of ∇ under a standard Gaussian
measure. Notice that in calculus w.r.t. Lebesgue measure λn we have that

(1.3)

∫
Rn

∇f(x) · g(x) dλn(x) = −
∫
Rn

f(x)∇ · g(x) dλn(x),

which explains the terminology. The minus is hidden in δn as is seen by comparison
of (1.2) and (1.3).
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If g is the gradient of some scalar field h, i.e., g = ∇h, then we have

∫
Rn

∇f(x) · ∇h(x) dνn(x)

=

∫
Rn

f(x)
n∑
i=1

[∂ih(x)xi − ∂2
i h(x)] dνn(x)

=

∫
Rn

f(x)[∇h(x) · x−∆h(x)] dνn(x)

:= −
∫
Rn

f(x)Lnh(x) dνn(x).

The operator

Lnh(x) := ∆h(x)−∇h(x) · x

is called the Ornstein-Uhlenbeck operator. Putting the pieces together we see that

Ln = −δn∇.

The Ornstein-Uhlenbeck operator plays the same role on L2(Rn,BRn , νn) as the
Laplace operator on L2(Rn,BRn , λn), where λn is the n-dimensional Lebesgue
measure. It is self adjoint, negative and densely defined. It generates an important
semi-group called the Ornstein-Uhlenbeck semi-group.

It is possible to extend the operators to be well defined on a larger space of
function, just as the case with λn, to Sobolev spaces. We omit that, and instead
pass to the probabilistic case. There, in the situation of possibly countably many
Gaussian random variables on some abstract probability space (Ω,F ,P) we will
develop the Sobolev theory.

2. Simplified Malliavin Calculus

The calculus above will here move into a probabilistic setting. Let the prob-
ability space (Ω,F ,P) = (Rn,Bn, νn), i.e, a Gaussian probability space admit-
ting at most n independent random variables. We denote a point of Ω by ω.
For every h ∈ Rn we define a random variable I(h)(ω) := 〈ω, h〉Rn . It is easy
to check that E[I(h)] = 0, for all h ∈ Rn and E[I(h)I(g)] = 〈h, g〉Rn , for all
h, g ∈ Rn. Now, let {h1, . . . , hn} ⊂ Rn, be an orthonormal system. It is then
clear that I(h1), . . . , I(hn) are independent Gaussian random variables. Define,
for f ∈ C∞p (Rn), the random variable F = f(I(h1), . . . , I(hn)). We want to differ-
entiate F with respect to the chance parameter ω. We denote the corresponding
gradient D. Clearly

DI(h)(ω) = D〈ω, h〉Rn = h,

and thus,
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DF = Df(I(h1), . . . , I(hn)) = ∇f(I(h1), . . . , I(hn))[h1, . . . , hn]∗

=
n∑
i=1

∂if(I(h1), . . . , I(hn))hi.

Here ∗ denotes matrix transpose. The directional derivative of F in direction
h ∈ H is denoted DhF . It is given by

DhF = 〈DF, h〉Rn .

For F = f(I(h1), . . . , I(hn)) we have that

∂

∂ε
f
(
〈ω − εh, h1〉Rn , . . . , 〈ω − εh, hn〉Rn

)∣∣∣
ε=0

=
∂

∂ε
f
(
I(h1)− ε〈h1, h〉Rn , . . . , I(hn)− ε〈hn, h〉Rn

)∣∣∣
ε=0

=
n∑
i=1

∂if(I(h1), . . . , I(hn))〈hi, h〉Rn = DhF.

So, Dh seems to be reasonably defined.
Taking the second derivative yields

D2F =
n∑

i,j=1

∂i∂jf(I(h1), . . . , I(hn))hi ⊗ hj,

where the tensor product hi ⊗ hj is nothing but the outer product hih
∗
j , resulting

in an n by n matrix. It acts on a vector x by (hi ⊗ hj)x = hi〈hj,x〉Rn .
The differential calculus in the previous section moves over directly to this set-

ting. Let f ∈ C∞p (Rn), h1, . . . , hn ∈ Rn orthonormal and F = f(I(h1), . . . , I(hn)).
Further, define the smooth random vector field u = G1h1 + · · · + Gnhn with
Gi = gi(I(h1), . . . , I(hn)) and gi ∈ C∞p (Rn). Here we have chosen to express u in
terms of the basis {h1, . . . , hn}. Any other basis would do fine. We would then
make a change of basis and get different random coefficients G1, . . . , Gn. Working
with two different bases would make the final expression ugly.
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E[DF · u] =
n∑

i,j=1

E
[
∂if(I(h1), . . . , I(hn))gj(I(h1), . . . , I(hn))

]
〈hi, hj〉Rn

=

∫
Rn

n∑
i=1

∂if(x)gi(x) dνn(x)

=

∫
Rn

f(x)
n∑
i=1

[gi(x)xi − ∂igi(x)] dνn(x)

= E
[
F

n∑
i=1

[GiI(hi)−DhiGi]
]

:= E[Fδu].

Here we used that, by orthonormality,

∂igi(x) = ∂igi(x)〈hi, hi〉Rn =
〈 n∑
j=1

∂jgi(x)hj, hi

〉
Rn

= 〈DGi, hi〉Rn = DhiGi.

So, by the above calculation the divergence δ for u = G1h1 + · · ·+Gnhn is given
by

δu =
n∑
i=1

[GiI(hi)−DhiG].

Now to the Ornstein-Uhlenbeck operator. Let f, g ∈ C∞p (Rn), {h1, · · · , hn} ⊂
Rn orthonormal, F = f(I(h1), . . . , I(hn)) and G = g(I(h1), . . . , I(hh)).

E[〈DF,DG〉Rn ] =
n∑

i,j=1

E
[
∂if(I(h1), . . . , I(hn))∂jg(I(h1), . . . , I(hn))

]
〈hi, hj〉Rn

=

∫
Rn

∇f(x) · ∇g(x) dνn(x)

=

∫
Rn

f(x)
n∑
i=1

[xi∂ig(x)− ∂2
i g(x)] dν2(x)

= E
[
F

n∑
i=1

[I(hi)D
hiG− 〈D2Ghi, hi〉Rn ]

]
= E

[
F
[ n∑
i=1

I(hi)D
hiG− Tr(D2G)

]]
:= E[FLG]

Here we used that, by orthogonality and the definition of the outer product,
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∂2
i g(x) =

n∑
j,k=1

∂j∂kg(x)〈hj, hi〉Rn〈hi, hk〉Rn

=
〈 n∑
j,k=1

∂j∂kg(x)(hj ⊗ hk)hi), hi
〉
Rn

= 〈D2Ghj, hj〉Rn .

The Ornstein-Uhlenbeck operator is hence given by

LF =
n∑
i=1

I(hi)D
hiF − Tr(D2F )

Those explicit expressions of δ and L will not be of big importance. We will
take the closure of the above used random variables, in an appropriate norm.
Naturally, the closure contains more general random variables. The calculations
above gives us a motivation for the abstract framework to come. We will define
families of Gaussian random variables {I(h) : h ∈ H} for an arbitrary separable
Hilbert space H.

3. Gaussian Hilbert Spaces

Let H be a separable Hilbert space and Ω its algebraic dual, i.e., the space
of all linear but not necessarily bounded functionals h 7→ ω(h) ∈ R for h ∈ H.
Define a family of functions {I(h) : h ∈ H} on Ω by ω 7→ I(h)(ω) = ω(h). Let F
be the σ-algebra generated by the functions {I(h) : h ∈ H}. Itô has proven that
there exists a unique probability measure P that makes {I(h) : h ∈ H} satisfy the
properties of the following definition.

Definition 3.1. A collection {I(h)}h∈H of real random variables is called an
isonormal Gaussian process on (Ω,F ,P) if

• I(h) is centered Gaussian ∀h ∈ H,

• E[I(h)I(g)] = 〈h, g〉H ,∀h, g ∈ H.

Such a family is called an isonormal Gaussian process. It offers us a set of linear
functionals on (Ω,F ,P) suited for differential calculus. By definition rather than
by calculation we will have DI(h) = h. The isometry enables us to easily create
independent random variables via orthogonality in H. Notice that the family
{I(h) : h ∈ H} ⊂ L2(Ω) is a closed subspace and hence a Hilbert space. This
follows from the fact that L2-limits and hence limits in probability of Gaussian
random variables are Gaussian together with the above properties. Such spaces
are refereed to as Gaussian Hilbert spaces.

The Itô isometry offers a concrete example of an isonormal Gaussian process.
Let H = L2([0, T ]), {W (t)}t∈[0,T ] be a standard Wiener process. Define I(h) =∫ T

0
h(s) dW (s), i.e. the Itô integral of a deterministic square integrable integrand.
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It is well known that I(h) is centered Gaussian. Moreover by the Itô isometry for
h, g ∈ H

E[I(h)I(g)] = E
[ ∫ T

0

h(t) dW (t)

∫ T

0

g(t) dW (t)
]

=

∫ T

0

h(t)g(t) dt = 〈h, g〉H .

This is the Wiener integral defined on the measure space ([0, T ],B[0,T ], λ[0,T ]) where
λ[0,T ] is the Lebesgue measure on [0, T ]. We will now construct the Wiener integral
on a general measure space. This is not central for what to come and can be
skipped, but it offers a wide range of examples of isonormal Gaussian processes.

Let (X,G, ν) be a positive measure space. Define the function C : G × G →
[0,∞], (A,B) 7→ ν(A∩B). It is clear that C is symmetric and it can be shown that
it is positive definite. It is known that given any mean function µ : T → R and
covariance function Q : T × T → R, where T is some set, there exist a Gaussian
process {G(t)}t∈T with E[G(t)] = µ(t), ∀t ∈ T , Cov(G(s), G(t)) = Q(s, t),∀s, t ∈
T, defined on some probability space (Ω,F ,P).

Let now the index set be T = G, the mean be µ = 0 and the covariance be
given by Q = C defined before. By the discussion above there exists a Gaussian
process {Ẇ (A)}A∈G on (Ω,F ,P) satisfying

• E[Ẇ (A)] = 0,∀A ∈ G,

• E[Ẇ (A)Ẇ (B)] = ν(A ∩ B),∀A,B ∈ G.

Let h be a simple real valued function on X, i.e. h(x) =
∑n

i=1 aiχAi
where

a1, . . . , an ∈ R and A1, . . . , An ∈ G are disjoint. We define the Wiener integral
I(h) of h by

I(h) =
n∑
i=1

aiẆ (Ai).

Clearly E[I(h)] = 0 and moreover

‖I(h)‖2
L2(Ω,F ,P) = E[I(h)2] =

n∑
i=1

a2
i ν(Ai) = ‖h‖2

L2(X,G,ν).

This is the so called Wiener isometry. Let {hn}n∈N be a Cauchy sequence of
simple functions in L2(X,G, ν) converging to h ∈ L2(X,G, ν). Then by the Wiener
isometry {I(hn)}n∈N is a Cauchy sequence in L2(Ω,F ,P). Since this is a complete
space it converges. We denote the limit by I(h). If we let H = L2(X,G, ν) then
clearly we have that {I(h) : h ∈ H} is an isonormal Gaussian process.

Example 3.2. For (X,G, ν) = (R+,BR+ , λ) W is the Wiener (Itô) integral of
square integrable functions on [0,∞). Moreover, we have that I(χ[0,t]) = β(t), i.e.
a standard Brownian motion. The Gaussian independent increments are imme-
diate from the construction. To prove the almost sure continuity Kolmogorovs
continuity criterion can easily be used.
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4. The Malliavin Derivative

Here, we will leave all special cases behind us and make no assumptions on
the topology of Ω. What we have is an isonormal Gaussian process {I(h) : h ∈
H} indexed by a separable Hilbert space H and defined on a probability space
(Ω,F ,P). The σ-algebra F is assumed to be generated by {I(h) : h ∈ H}. The
theory starts with the sort of smooth random variables we have seen already,
namely the type F = f(I(h1), . . . , I(hn)), where n ∈ N, f ∈ C∞p (Rn,R) and
{h1, . . . , hn} ⊂ H. We denote this class of smooth random variables S. The fact
that the probability space admits a countable number of independent r.v. does
not affect the calculus. The vector (I(h1), . . . , I(hn)) still has the standard normal
distribution on Rn. Further, define Sb ⊂ S and S0 ⊂ S to be smooth random
variables with f ∈ C∞b (Rn,R) (bounded) and f ∈ C∞0 (Rn,R) (compact support)
respectively. Clearly S0 ⊂ Sb ⊂ S and S0 is dense in L2(Ω).

Definition 4.1. For F = f(I(h1), . . . , I(hn)) ∈ S we define the Malliavin
derivative of F to be the H-valued random variable

DF =
n∑
i=1

∂if(I(h1), . . . , I(hn))hi

Example 4.2. Let {β(t)}t∈[0,T ] be a Brownian motion. We have that

Dβ(t) = D

∫ T

0

χ[0,t](s) dβ(s) = DW (χ[0,t]) = χ[0,t], t ∈ [0, T ].

The directional derivative 〈DF, h〉H will be denoted DhF . The next result is
an integration by parts formula for smooth random variables.

Lemma 4.3. Let F ∈ S and h ∈ H. Then

E[〈DF, h〉H ] = E[FI(h)].

Proof. We can without loss of generality assume for n ∈ N, f ∈ C∞p (Rn,R),
F = f(I(h1), . . . , I(hn)) that h1, . . . , hn ∈ H are orthonormal. Otherwise we
can redefine f since W is linear. We have that I(h1), . . . , I(hn) are independent
standard normal random variables. Now, for h ∈ Span(h1, . . . , hn) ⊂ H, we
integrate by parts as in (1.1).



8

E[〈DF, h〉H ] =
n∑
i=1

E[∂if(I(h1), . . . , I(hn))]〈hi, h〉H

=
n∑
i=1

∫
Rn

∂if(x)e−x·x/2
dx

(2π)n/2
〈hi, h〉H

=
n∑
i=1

∫
Rn−1

∫
R
∂if(x1, . . . , xi, . . . , xn)e−x

2
i /2 dxi

× e−
∑

k 6=i x
2
k/2

dx1 · · · dxi−1 dxi+1 · · · dxn
(2π)n/2

〈hi, h〉H

=
n∑
i=1

∫
Rn

f(x)xie
−x·x/2 dx

(2π)n/2
〈hi, h〉H

=
n∑
i=1

E[FW (hi)]〈hi, h〉H

= E[FW (
n∑
i=1

〈hi, h〉Hhi)]

= E[FI(h)]

If h⊥Span(h1, . . . , hn) then the left hand side is clearly zero. For the right hand
side, F and I(h) becomes independent, so E[FI(h)] = E[F ]E[I(h)] = 0. �

Remark 4.4. Notice that Lemma 4.3, written in non probabilistic terms, is
equivalent to the following. For F ∈ S and h ∈ H we have

〈DF, h〉L2(Ω,H) = 〈F, I(h)〉L2(Ω)

It is clear that W is the adjoint of D in this smooth ”semi-deterministic” setting.
In section 10 we will be able to extend this to random h in a subset of L2(Ω, H)
and by the next proposition F in a larger class than S.

Example 4.5. Let H = L2([0, T ]) and {β(t)}t∈[0,T ] be a Brownian motion.
Then Lemma 4.3 reads

E
∫ T

0

DsFh(s) ds = EF
∫ T

0

h(s) dβ(s).

We will now extend the derivative operator outside the class S. Let p ≥ 1.
The Watanabe graph norm of D : Lp(Ω,F ,P)→ Lp(Ω,F ,P;H) is defined by

(4.1) ‖F‖1,p =
(
E[|F |p] + E[‖DF‖pH ]

)1/p

.

We will make use of the following observation.

(4.2) E[G〈DF, h〉H ] = E[FGI(h)]− E[F 〈DG, h〉H ].
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It follows by application of Lemma 4.3 to E[FGI(h)] for F,G ∈ S, h ∈ H and by
using the product rule. The latter is an obvious consequence of the usual product
rule.

Proposition 4.6. Let p ≥ 1. The closure of S under the norm (4.1) is a
Banach space and a dense subspace of Lp(Ω). It is called the Watanabe-Sobolev
space and we denote it D1,p. The space D1,2 is a Hilbert space with inner product

〈F,G〉1,2 = E[FG] + E[〈DF,DG〉H ].

Proof. We need to prove thatD is a closable operator from Lp(Ω) to Lp(Ω, H).
For this it suffices to prove that for a sequence {Fn}n∈N ⊂ S such that Fn → 0 ∈
Lp(Ω) and DFn → η ∈ Lp(Ω) then η = 0 1.

Fix h ∈ H and let G ∈ S such that G and GI(h) are bounded. Such random
variables are dense in Sb and hence in L2(Ω). To see this let G̃ ∈ Sb, G̃n =

G̃e−εnI(h)2 for εn > 0, n = 1, 2, . . . and εn → 0. Then G̃nI(h) are bounded n =
1, 2, . . . and G̃n → G̃ in L2(Ω). Let now {Fn}n∈N ⊂ S such that Fn → 0 ∈ Lp(Ω)
and DFn → η ∈ Lp(Ω). Then, using bounded convergence and (4.2) we get,

E[G〈η, h〉H ] = lim
n→∞

E[G〈DFn, h〉H ]

= lim
n→∞

E[FnGI(h)]− E[Fn〈DG, h〉H ] = 0

since Fn → 0 in Lp(Ω) ⊂ L1(Ω) and GI(h) and 〈DG, h〉H are bounded. This
implies that 〈η, h〉H = 0 with probability one. The same result can be obtained
for any h ∈ H and hence η = 0 almost surely. �

The following proposition is the Malliavin chain rule.

Proposition 4.7. Let ϕ ∈ C1
b (Rn,R) and F = (F 1, . . . , F n), where F i ∈ D1,p,

i = 1, . . . , n. Then ϕ(F ) ∈ D1,p and

Dϕ(F ) =
n∑
i=1

∂iϕ(F )DF i.

Proof. Let ψ ∈ C∞0 (Rn,R) be positive with support in the unit ball and
with total mass one. Define the so called mollifiers φk = knφ(kx). They have the
same properties as ψ only that the support vanishes as k → ∞. The regularized
functions

(4.3) ϕk(x) = ϕ ∗ φk(x) =

∫
Rn

ϕ(y)φk(x− y) dy

1Let (F, u) and (F, v) be in the closure G(D) of the graph G(D). Then there exist sequences
{F 1

n}n∈N ⊂ S and {F 2
n}n∈N ⊂ S such that (F 1

n , DF
1
n) → (F, u) and (F 2

n , DF
2
n) → (F, v). We

have that S 3 F 1
n − F 2

n → 0 and D(F 1
n − F 2

n)→ u− v. But then u− v = 0 (if η above is zero).

So we can extend D for (F, u) ∈ G(D) by DF = u.
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is C∞b (Rn,R), k ∈ N. It is well known that ϕk → ϕ uniformly and since ϕ ∈
C1
b (Rn,R) also ∂iϕk → ∂iϕ uniformly, i = 1, . . . , n. Let {F j

k}k∈N, j = 1, . . . , n,
be a sequences of smooth random variables converging to F j respectively in D1,p.
Since ϕk(Fl) ∈ S we have that

Dϕk(Fl) =
n∑
i=1

∂iϕk(Fl)DF
i
l .

Now, we check convergence.

E
[∥∥∥ n∑

i=1

∂iϕk(Fl)DF
i
l −

n∑
i=1

∂iϕ(F )DF i
∥∥∥p]

≤ C
{ n∑

i=1

E[‖∂iϕk(Fl)DF i
l − ∂iϕk(Fl)DF i‖pH ]

+
n∑
i=1

E[‖∂iϕk(Fl)DF i − ∂iϕk(F )DF i‖pH ]

+
n∑
i=1

E[‖∂iϕk(F )DF i − ∂iϕ(F )DF i‖pH ]
}

→ 0, l, k →∞.

The terms of the first sum converges to zero by dominated convergence since
F i
l → F i in D1,p and the derivatives ∂iϕk are uniformly bounded in k. The second

sum converges to zero by bounded convergence since F i ∈ D1,p and the continuity
of ∂iϕ and ∂iϕk, k ∈ N. For the third sum bounded convergence together with
the uniform convergence of ∂ϕk → ∂iϕ yields the result. �

A similar result will be proved in section 9, for the case when the function ϕ
is globally Lipschitz continuous.

5. Hilbert Space Tensor Products

When defining higher derivatives or the Malliavin derivative of Hilbert space
valued random variables we will need tensor products. These are characterized
by the following definition but can be realized in several different but isomorphic
ways.

Definition 5.1. Let H and U be two separable Hilbert spaces. The tensor
product of H and U , denoted H ⊗ U , is a Hilbert space together with a bilinear
map H×U 3 (h, u) 7→ h⊗u ∈ H⊗U with dense range satisfying for all h1, h2 ∈ H
and u1, u2 ∈ U

(5.1) 〈h1 ⊗ u1, h2 ⊗ u2〉H⊗U = 〈h1, h2〉H〈u1, u2〉U .

We will realize H⊗U as the space of Hilbert-Schmidt operators from U to H.
Let L(U,H) denote the Banach space of all bounded linear operators L : U → H.
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Definition 5.2. An operator T ∈ L(U,H) is Hilbert-Schmidt if for any ON-
basis {en}n∈N ⊂ U

∞∑
k=1

‖Tek‖2
H <∞.

Proposition 5.3. The space of Hilbert-Schmidt operators, denoted L2(U,H),
is a separable Hilbert space with inner product and norm

〈S, T 〉L2(U,H) =
∞∑
k=1

〈Sek, T ek〉H , ‖S‖L2(U,H) =
( ∞∑
k=1

‖Sek‖2
H)
) 1

2
,

where {ek}k∈N ⊂ U is an ON-basis.
Together with the map H × U 3 (h, u) 7→ h ⊗ u with (h ⊗ u)v = h〈u, v〉U for

v ∈ U , we have that L2(U,H) = H ⊗ U .

Proof. It is straight forward to show that the inner product is well defined,
i.e. does not depend on the choice of orthonormal basis. Moreover, property (5.1)
is satisfied since

〈h1 ⊗ u1, h2 ⊗ u2〉L2(U,H) =
∞∑
k=1

〈(h1 ⊗ u1)ek, (h2 ⊗ u2)ek〉H

= 〈h1, h2〉H
∞∑
k=1

〈u1, ek〉U〈u2, ek〉U

= 〈h1, h2〉H〈u1, u2〉U .

Let {ek}k∈N ⊂ H and {fk}k∈N ⊂ U be ON-bases. It is immediate that {ek⊗fl}k,l∈N
is an ON-system for L2(U,H). To prove that it is complete let 〈T, ek⊗fl〉L2(U,H) =
0, for all k, l ∈ N. Then, for all k, l ∈ N,

〈T, ek ⊗ fl〉L2 =
∞∑
n=1

〈Tfn, (ek ⊗ fl)fn〉H

=
∞∑
n=1

〈Tfn, ek〉H〈fn, fl〉U = 〈Tfl, ek〉H = 0.

This implies that Tfl = 0 for all l ∈ N and hence T = 0. We have proved
separability.

Now to completeness. Let {Tn}n∈N ⊂ L2(U,H) be a Cauchy sequence. Then,
since ‖T‖L(U,H) ≤ ‖T‖L2(U,H), for all T ∈ L2(U,H)2, {Tn}n∈N is a Cauchy sequence
in L(U,H). Now, L(U,H) is complete so there exists T ∈ L(U,H) such that

2For any ε > 0, ∃{ek}k∈N ⊂ U ONB: ‖T‖2L(U,H) ≤ ‖Te1‖
2
H + ε ≤

∑∞
k=1 ‖Tek‖2H + ε =

‖T‖2L2(U,H) + ε.
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‖Tn − T‖L(U,H) → 0. Let ε > 0. For large enough n ∈ N it follows by Fatou’s
Lemma that

‖Tn − T‖2
L2(U,H) =

∞∑
k=1

‖(Tn − T )fk‖2
H =

∞∑
k=1

lim
m→∞

‖(Tn − Tm)fk‖2
H

≤ lim inf
m→∞

∞∑
k=1

‖(Tn − Tm)fk‖2
H = lim inf

m→∞
‖Tn − Tm‖L2(U,H)

< ε.

Since ε is arbitrary ‖Tn − T‖L2(U,H) → 0 as n → ∞ and we have proved the
completeness. This finishes the proof. �

Tensor product spaces of several Hilbert spaces are defined iteratively, a.e.,
H⊗3 = H ⊗ (H ⊗H) ∼= (H ⊗H)⊗H and so on.

6. Higher Derivatives

The tensor product machinery allows us to iterate the Malliavin derivative.
Let F = f(I(h1), . . . , I(hm)) be a smooth random variable. The second derivative
is given by

D2F =
m∑

i,j=1

∂i∂jf(I(h1), . . . , I(hm))hi ⊗ hj.

One can choose two different realizations of the tensor product. If we let

h1 ⊗ h2 · (g1, g2) = 〈h1 ⊗ h2, g1 ⊗ g2〉H⊗H = 〈h1, g1〉〈h2, g2〉

we have by an easy check a valid realization of the tensor product, in view of
definition 5.1. This realization give us the representation of D2F as a bounded
bilinear form D2F (ω) : H ×H → R. We have by Parseval’s formula that, for an
ON-basis {ek}k∈N and a bilinear functional b,

‖b‖2
H⊗H =

∞∑
i,j=1

|〈b, ei ⊗ ej〉H⊗H |2 =
∞∑

i,j=1

|b · (ei, ej)|2.

Hence b ∈ H ⊗H if and only if b is Hilbert-Schmidt. This is not the approach we
will take. Instead we consider the operator that, by Riesz representation theorem,
determines the bilinear form b, i.e. the operator determined by the relation

b · (f, g) = 〈Bf, g〉, ∀f, g ∈ H.

Clearly B is an Hilbert-Schmidt operator on H, indeed,

‖B‖2
L2(H) =

∑
k∈N

|〈Bek, ek〉|2 =
∑
k∈N

|b · (ek, ek)|2 <∞.
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We thus instead consider the tensor product realization of the previous section,
i.e.

h1 ⊗ h2 · f = h1〈h2, f〉

and H⊗H = L2(H), i.e., the the space of Hilbert-Schmidt operators. Hence, with
this approach the second Malliavin derivative is considered an operator. One can
think of it as the Malliavin Hessian operator. Iteratively we can define the k:th
Malliavin derivative taking values in H⊗k as

DkF =
m∑

i1,...,ik=1

∂i1 · · · ∂ikf(I(h1), . . . , I(hm))hi1 ⊗ · · · ⊗ hik .

Introducing the norms

‖F‖k,p =
(
E[|F |p] +

k∑
j=1

E[‖DjF‖H⊗j ]p
) 1

p
.

we can analogous to the case k = 1 take the closure and define the higher ordered
Watanabe-Sobolev spaces Dk,p. It follows directly that Dk,p are monotonously
decreasing in both p and k.

7. Hermite Polynomials

In order to develop the Wiener Chaos decomposition in the next section we
need some knowledge about Hermite polynomials. The exposition is intensionally
very explicit and somehow elementary.

We define, for n > 0 the n:th Hermite polynomial Hn(x), x ∈ R, by

(7.1) Hn(x) =
(−1)n

n!
e

x2

2
dn

dxn
e−

x2

2 ,

and H0(x) = 1. The convention here to include the 1/n! in the definition is not
standard. The following proposition states some important properties of {Hn}n∈N.

Proposition 7.1. Let {Hn}n∈N be given by (7.1). For n ≥ 1 the following
properties holds:

(i) H ′n(x) = Hn−1(x),

(ii) (n+ 1)Hn+1(x) = xHn(x)−Hn−1(x),

(iii) Hn(−x) = (−1)nHn(x).

Proof. Consider the function F (x, t) = exp(tx − t2

2
). Making a Maclaurin

expansion of F in t we get that
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F (x, t) = exp
(x2

2
− 1

2
(x− t)2

)
= e

x2

2

∞∑
n=0

tn

n!

( dn

dtn
e−

(x−t)2

2

)∣∣∣
t=0

= e
x2

2

∞∑
n=0

tn
(−1)n

n!

dn

dxn
e−

x2

2

=
∞∑
n=0

tnHn(x).

(7.2)

Here we have used that dn

dtn
e−

(x−t)2

2 |t=0 = (−1)n dn

dxn
e−

x2

2 . This can be shown by

induction. An easy calculation shows that d
dx
F (x, t) = tF (x, t), so that

d

dx
F (x, t) = tF (x, t) =

∞∑
n=1

tnHn−1(x).

Differentiating term by term in (7.2) we get that

d

dx
F (x, t) =

∞∑
n=1

tnH ′n(x).

Comparing the terms gives property (i). For property (ii) we have by property (i)
and differentiation of Hn that

Hn−1(x) =
d

dx
Hn(x) = xHn(x)− (n+ 1)Hn+1(x).

For property (iii) we notice from the definition of F that F (x, t) = F (−x,−t).
Now,

∞∑
n=1

tnHn(x) = F (t, x) = F (−t,−x) =
∞∑
n=0

tn(−1)nHn(−x).

Comparing terms again gives property (iii). �

Consider the Ornstein-Uhlenbeck operator L1, introduced in Section 1,

L1f(x) =
d2

dx2
f(x)− x d

dx
f(x)

acting on smooth enough functions f : R → R. Now, we let L1 act on the n:th
Hermite polynomial.

L1Hn(x) =
d2

dx2
Hn(x)− x d

dx
Hn(x) = Hn−2(x)− xHn−1(x) = nHn(x).
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Here property (i) and (ii) of Proposition 7.1 has been used. It is clear that the
Hermite polynomials are the eigenfunctions for the Ornstein-Uhlenbeck operator
in dimension 1. Hermite polynomial Hn has the corresponding eigenvalue n. We
will show that {Hn}n∈N is an orthonormal basis for L2(R, ν1), where ν1 is the
standard normal law.

We will move into a probabilistic setting and actually prove a slightly more
general result for Gaussian random variables. We need the following Lemma.

Lemma 7.2. Let X and Y have a joint Gaussian distribution with E[X] =
E[Y ] = 0 and E[X2] = E[Y 2] = 1. Then

(7.3) E
[

exp
(
sX − s2

2

)
exp

(
tY − t2

2

)]
= exp[stE[XY ]], ∀s, t ∈ R.

Proof. Denote the correlation by ρ = E[XY ]. We compute, using standard
techniques,

E
[

exp
(
sX − s2

2

)
exp

(
tY − t2

2

)]
=

∫ ∫
esx−

s2

2 ety−
y2

2 e−(x2−2ρxy+y2) dx dy

2π
√

1− ρ2

=

∫ ∫
e−(x−s)2/2e−(y−t)2/2eρxy

dx dy

2π
√

1− ρ2

= estρ
∫ ∫

e−(z2−2ρzw+w2)/2eρ(tz+sw) dz dw

2π
√

1− ρ2

= exp(stE[XY ])E[exp(ρ(tX + sY ))].

The factor E[exp(ρ(tX + sY ))] = 1 since ρ(tX + sY ) is Gaussian with zero mean
and E[eG] = eE[G] for any Gaussian random variable G. �

We are now ready to prove the orthogonality relationship for Hermite polyno-
mials of Gaussian random variables.

Lemma 7.3. Let X and Y have a joint Gaussian distribution with E[X] =
E[Y ] = 0 and E[X2] = E[Y 2] = 1. Then, for any non-negative n 6= m, Hn(X)
and Hm(Y ) are orthogonal, i.e., E[Hn(X)Hm(Y )] = 0. Moreover

E[Hn(X)Hn(Y )] =
1

n!
E[XY ]n.

If we let X = Y we obtain the classical orthogonality property for {Hn}n on
L2(R, ν1).

Proof. Differentiating the left hand side of (7.3) utilizing the expansion (7.2)
yields
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∂m+n

∂sm∂tn
E
[ ∞∑
i=1

siHi(X)
∞∑
j=1

tjHj(Y )
]∣∣∣
s,t=0

= E
[ ∞∑
i=m

i(i− 1) · · · (i− n+ 1)si−mHi(X)

×
∞∑
j=n

j(j − 1) · · · (j − n+ 1)tj−nHj(Y )
]∣∣∣
s,t=0

= E[m!Hm(X)n!Hn(Y )]

(7.4)

Differentiating the right hand side of (7.3) it can easily be shown that

(7.5)
∂m+n

∂sm∂tn
exp(stE[XY ])

∣∣∣
s,t=0

= n!E[XY ]n

if n = m and zero otherwise. Equating (7.4) and (7.5) finishes the proof.
�

8. The Wiener Chaos Decomposition

In this section a useful decomposition, due to Wiener, of L2(Ω,F ,P) known as
Wiener Chaos decomposition will be proved. It will be of central importance when
doing spectral theory for the Ornstein-Uhlenbeck operator and it’s corresponding
semigroup. We will also need it when proving an important property of the adjoint
of the Malliavin derivative. The Hermite polynomials will be a useful tool for us.

We return to the setting of an isonormal Gaussian process {I(h) : h ∈ H}
where H is our separable Hilbert space.

Definition 8.1. The n:th Wiener ChaosHn is the closed subspace of L2(Ω,F ,P)
given by {Hn(I(h)) : h ∈ H, ‖h‖ = 1}. Here Hn is the n:th Hermite polynomial.
We denote the orthogonal projection onto Hn by Jn.

It is clear that H0 is the space of constants and H1 is our Gaussian Hilbert
space {I(h) : h ∈ H}. Lemma 7.3 tells us that Hn ⊥ Hm, whenever n 6= m. The
following theorem is the so called Wiener-Chaos decomposition of L2(Ω,F ,P).

Theorem 8.2. The following decomposition of L2(Ω,F ,P) holds.

L2(Ω,F ,P) =
∞⊕
n=0

Hn.

For the proof we need the following lemma

Lemma 8.3. If E[XeI(h)] = 0 for all h ∈ H. Then X = 0.

proof of lemma. If X satisfies the given assumption, then clearly
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(8.1) E
[
X exp

( m∑
i=1

siW (hi)
)]

= 0

for any s1, . . . , sm ∈ R and h1, . . . , hm ∈ H. Let us fix m ≥ 1 and h1, . . . , hm ∈ H.
We have that

E
[
X exp

( m∑
i=1

siW (hi)
)]

=

∫
Ω

exp
( m∑
i=1

siW (hi)
)
X dP

:=

∫
Rm

exp
( m∑
i=1

sixi

)
dµ(x)

(8.2)

Here, for A ∈ BRm ,

µ(A) =
(

[I(h1), . . . , I(hm)]−1 ◦
∫
·
X dP

)
(A)

=

∫
[I(h1),...,I(hm)]−1(A)

X dP

=

∫
Ω

χA(I(h1), . . . , I(hm))X dP

= E[χA(I(h1), . . . , I(hm))X].

Hence (8.1) and (8.2) imply that the Laplace transform of the signed measure µ
equals to zero. Hence, µ is the zero measure on Rm. Since F is generated by
{I(h) : h ∈ H} we have that E[XχF ] = 0, for all F ∈ F . This implies that
X = 0. �

proof of theorem 8.2. Let X ∈ L2(Ω,F ,P) be orthogonal to all Wiener-
Chaos Hn, n ∈ N. Then E[XHn(I(h))] = 0, for all n ∈ N and h ∈ H. Since
xn can be expressed as a linear combination of Hermite polynomials of order less
than or equal to n, E[XI(h)n] = 0, for all n ∈ N and h ∈ H. Expressing exp(I(h))
as a power series we also have that E[X exp(I(h))] = 0, for all n ∈ N and h ∈ H.
But, by Lemma 8.3, X = 0 and we are done. �

Let P0
n be the set of all random variables of the form p(I(h1), . . . , I(hm)) where

p is a polynomial of degree not greater that n, m ∈ N and h1, . . . , hm ∈ H. We
denote its closure in L2(Ω,F ,P) by Pn.

Lemma 8.4. For any n ∈ N,

Pn = H0 ⊕H1 ⊕ · · · ⊕ Hn.

Proof. The inclusion H0 ⊕H1 ⊕ · · · ⊕Hn ⊂ Pn is obvious. For the converse
inclusion it is enough to prove that Pn ⊥ Hk for all k ≥ n. For this it suffices
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to show that E[p(I(h1), . . . , I(hm))Hk(I(h))] = 0, for h, h1 . . . , hm ∈ H, ‖h‖ = 1
and p ∈ P0

n, since P0
n ⊂ Pn is dense. By a Gram-Schmidt process and by linearity

of h 7→ I(h) we can replace p(I(h1), . . . , I(hm)) by q(W (e1), . . . ,W (em), I(h)) for
some q ∈ P0

n and {ei}mi=1 ⊂ H orthonormal. By independence it then suffices to
prove that E[I(h)rHk(I(h))] = 0, for 1 ≤ r ≤ n < k. This holds since I(h)r can
be written as a linear combination of Hermite polynomials of I(h). �

Let Λ be the set of all sequence a = (a1, a2, . . . ), where ai ∈ N, i ∈ N, with
ai = 0 except for a finite number of i ∈ N. We refer to Λ as a set of multiindices.
Let |a| =

∑∞
i=1 ai and a! =

∑∞
i=1 ai!. Let, for a ∈ Λ and {ei}i∈N ⊂ H being an

orthonormal basis,

Φa =
√
a!
∞∏
i=1

Hai(W (ei)).

This is a well defined product since all but finitely many Hai = 1.

Proposition 8.5. The family of random variables {Φa}a∈Λ is an orthonormal
basis for L2(Ω,F ,P). For any n ≥ 1,

{Φa : a ∈ Λ, |a| = n}

is an orthonormal basis for Hn.

Proof. We prove the second statement. The first is then a consequence of the
Wiener-Chaos decomposition, Theorem 8.2. Let a, b ∈ Λ. Then, by independence
and Lemma 7.3,

E[ΦaΦb] =
√
a!b!E

[ ∞∏
i=1

Hai(W (ei))Hbi(W (ei))
]

=
√
a!b!

∞∏
i=1

E[Hai(W (ei))Hbi(W (ei))]

=

{
1 if a = b

0 if a 6= b

So, the families {Φa : a ∈ Λ, |a| = n} and {Φa : a ∈ Λ, |a| = m} are orthogonal. Its
respective members are mutually orthogonal. For n = 1, {Φa : a ∈ Λ, |a| = 1} =
{W (ek)}k∈N. Clearly cl{W (ek)}k∈N = {I(h) : h ∈ H} = H1 so {Φa : a ∈ Λ, |a| =
1} is an ON-basis for H1. Assume inductively that {Φa : a ∈ Λ, |a| = n− 1} is an
ON-basis for Hn−1. Clearly {Φa : a ∈ Λ, |a| = n} ⊂ Pn \ Pn−1 = Hn since Φa is a
polynomial of degree at most n and since Pn−1 = H1 ⊕H2 ⊕ · · · ⊕ Hn−1 ⊥ {Φa :
a ∈ Λ, |a| = n} by the inductive assumption. Since P0

n is dense in Pn it is enough
to show that any p ∈ P0

n can be approximated by polynomials of members of the
family {W (ek)}k∈N. This is clear since {ek}k∈N is a basis for H. �
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Remark 8.6. Later it will be shown that {Φa}a∈Λ is the eigenvectors for the
Ornstein-Uhlenbeck operator, still not defined. Hn is the eigenspace corresponding
to the eigenvalue n for this operator.

9. More About the Malliavin Derivative

In Section 4 we introduced the derivative operator and proved some important
properties of it. With the Wiener Chaos machinery as a tool we shall now prove
more. The first result is a necessary and sufficient criterion for F ∈ L2(Ω,F ,P)
to be in Dk,2.

Proposition 9.1. Let F ∈ L2(Ω). Then F ∈ Dk,2 if and only if

∞∑
n=1

nkE[|JnF |2] <∞.

In this case, DkJnF = Jn−k(D
kF ).

Proof. Consider k = 1. Let F ∈ L2(Ω), {Φa}a∈Λ ⊂ L2(Ω) being the ON-
basis we defined in Section 8 and |a| = n.

DΦa =
√
a!
∞∑
j=1

∞∏
i=1,i 6=j

Hai(W (ei))Haj−1(W (ej))ej

It is clear that DΦa ∈ Hn−1. A similar calculation to (8) shows that {DΦa : a ∈
Λ, |a| = n} is an ON-basis for Hn−1(H). This space is defined as the closure in
L2(Ω, H) of {

∑m
i=1 Fihi : m ≥ 1, Fi ∈ Hn, i = 1, 2, . . . ,m, h1, h2, . . . , hm ∈ H}.

By the Pythagorean theorem, independence of W (ei) and W (ej) for i 6= j and
Lemma 7.3, we have

E[‖DΦa‖2] = a!
∞∑
j=1

∞∏
i=1,i 6=j

E[H2
ai

(W (ei))]E[H2
aj−1(W (ej))] =

∞∑
j=1

∏∞
i=1 ai!∏∞

i=1,i 6=j ai!(aj − 1)!
=
∞∑
j=1

aj!

(aj − 1)!
= |a| = n.

Attacking the norm of DF , we get using the Pythagorean theorem and Parseval’s
formula that

E[‖DF‖2] = E
[∥∥∥ ∞∑

n=1

∑
a∈Λ,|a|=n

〈F,Φa〉DΦa

∥∥∥2]
=
∞∑
n=1

∑
a∈Λ,|a|=n

|〈JnF,Φa〉|2E[‖DΦa‖2]

=
∞∑
n=1

nE[|JnF |2].
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This is what we wanted to prove for k = 1. Iterating we get that

E[‖DkF‖H⊗k ] =
∞∑
n=k

n(n− 1) · · · (n− k + 1)E[|JnF |2].

This is finite if and only if

∞∑
n=1

nkE[|JnF |2] <∞

and we are done. �

The following two corollaries are proved for D1,1 by Nualart. Notice that since
{D1,p}p≥1 is a family of spaces, monotonously decreasing in p, F ∈ D1,p, for p ≥ 1,
implies F ∈ D1,1. We here settle with p ≥ 2.

Corollary 9.2. Let F ∈ D1,2 with DF = 0. Then DF = E[F ].

Proof. Since DF = 0 the only Wiener chaos that can be nonzero is H0,
consisting of constant random variables. �

Corollary 9.3. Let A ∈ F . Then, the indicator function χA ∈ D1,2 if and
only if P(A) = 0 or P(A) = 1.

Proof. By applying the chain rule to φ(x) = x2 it yields that

DχA = Dχ2
A = 2χADχA.

This is possible only if DχA = 0. By Corollary 9.2 we have that χA = E[χA] =
P(A). �

10. The Divergence Operator

We want to define the adjoint operator δ to D : D1,2 → L2(Ω, H). For this
purpose we need the functional lu(F ) = E[〈DF, u〉H ] = 〈DF, u〉L2(Ω,H) to be L2-
continuous on D1,2. The domain of δ is

Dom(δ) = {u ∈ L2(Ω, H) : |E[〈DF, u〉H ]| ≤ Cu(E|F |2)
1
2 ,∀F ∈ D1,2}

Since lu is continuous on a dense domain D1,2 ⊂ L2(Ω) for every u ∈ Dom(δ)

there is an extension by continuity l̃u on the whole of L2(Ω). Riesz representation
theorem guarantees the existence of an element G ∈ L2(Ω) such that lu(F ) =

l̃u(F ) = E[FG] = 〈F,G〉L2(Ω). It is easy to prove that G is uniquely and linearly
determined by u, so we define δ(u) := G. Hence we have for F ∈ D1,2 and
u ∈ Dom(δ)

(10.1) E[〈DF, u〉H ] = E[Fδ(u)].

or equivalently
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〈DF, u〉L2(Ω,H) = 〈F, δ(u)〉L2(Ω).

Now, let us explore the properties of the operator δ and for u ∈ Dom(δ) the real
valued random variables δ(u). By letting F = 1 in (10.1) we get that E[δ(u)] = 0
for u ∈ Dom(δ). Moreover, by definition δ is linear. We define the class SH of
H-valued random variables of the form

(10.2) u =
n∑
i=1

Fihi,

where Fi ∈ S, hi ∈ H, i = 1, . . . , n and n ∈ N. We claim that for u ∈ SH

(10.3) δ(u) =
n∑
j=1

FjW (hj)− 〈DFj, hj〉H .

This follows by taking the adjoint and using equation (4.2) for G ∈ S

E[Gδ(u)] = E[〈DG, u〉H ] =
n∑
j=1

E[〈FjDG, hj〉H ] =
n∑
j=1

E[〈GDFj −DFjG, hj〉H ]

=
n∑
j=1

E[GFjW (hj)]− E[G〈DFj, hj〉H ] = E
[
G
( n∑
j=1

FjW (hj)− 〈DFj, hj〉H
)]

for all G ∈ S. Since S ⊂ L2(Ω) is dense (10.3) holds true. Notice that when
u = h ∈ H the rightmost sum in (10.3) vanishes and we have δ(h) = I(h). This
was expected in view of Remark 4.4.

Recall that the second Malliavin derivative of a random variable F ∈ D2,2 is a
random variable taking its value in the space of Hilbert-Schmidt operators, H⊗H.
It is also the Malliavin derivative of the H-valued random variable DF . Hence,
the first Malliavin derivative of a smooth enough, H-valued, random variable is
H ⊗ H-valued. For u ∈ SH of the form (10.2) we have the following explicit
expressions for the derivative and directional derivative respectively,

Du =
n∑
i=1

hi ⊗DFi

and

Dhu =
n∑
i=1

DhFihi =
n∑
i=1

〈DFi, h〉Hhi =
( n∑
i=1

hi ⊗DFi
)
h = (Du)h.

We will use that
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(10.4) D〈u, h〉H = D
n∑
i=1

Fi〈hi, h〉H =
( n∑
i=1

DFi ⊗ hi
)
h = (Du)∗h,

where ∗ denotes the adjoint. Here it has been used that (u⊗ v)∗ = v ⊗ u. This is
easy to prove.

The space D1,2(H) is defined as the closure of SH under the norm

‖u‖1,2,H =
(
E[‖u‖2] + E[‖Du‖2

H⊗H ]
) 1

2
.

Also, for h ∈ H, Dh,2(H) is the space all u ∈ L2(Ω, H) such that Dhu ∈ L2(Ω, H).
We state the basic properties of δ in the next Proposition.

Proposition 10.1. The operator δ satisfies:

(i) E[δ(u)] = 0, ∀u ∈ Dom(δ),

(ii) u 7→ δ(u) is linear,

(iii) δ(h) = I(h) for h ∈ H,

(iv) E[δ(u)δ(v)] = E[〈u, v〉H ] + E[Tr(Du ◦Dv)], ∀u, v ∈ D1,2(H) ⊂ Dom(δ),

(v) Dhδ(u) = 〈u, h〉H + δ(Dhu), ∀u ∈ D1,2(H) with Dhu ∈ Dom(δ).

In order to prove Proposition 10.1 we need the following lemma.

Lemma 10.2. Let G ∈ L2(Ω). If there exists Y ∈ L2(Ω) such that

E[Gδ(hF )] = E[Y F ],

for all F ∈ D1,2, then G ∈ Dh,2 and DhG = Y .

Proof of Lemma. We expand G into its Wiener-Chaos expansion. Recall
that Jn denotes the orthogonal projection onto the n:th Wiener-Chaos Hn. Mono-
tone convergence and duality yields

E[Y F ] = E[Gδ(hF )] = E[
( ∞∑
i=1

JnG
)
δ(hF )] =

∞∑
i=1

E[JnGδ(hF )]

=
∞∑
i=1

E[〈DJnG, hF 〉H ] =
∞∑
i=1

E[F 〈DJnG, h〉H ] =
∞∑
i=1

E[FDh(JnG)].

Hence, we have that

Y =
∞∑
n=0

JnY =
∞∑
n=1

Jn−1Y =
∞∑
n=1

Dh(JnG)
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and Jn−1Y = Dh(JnG) for all n ∈ N. In view of Proposition 9.1 this implies that

Jn−1Y = Dh(JnG) = 〈DJnG, h〉H = 〈Jn−1(DG), h〉H = Jn−1〈DG, h〉H
= Jn−1D

hG.

for all n ∈ N. We have proven that Y = DhG. �

Proof of proposition 10.1. Properties (i) and (ii) are already proved. The
proof goes as follows. We prove (v) for u ∈ SH and use it to prove (iv). Finally
we prove (v) in full generality using (iv) and Lemma 10.2.

Let u ∈ SH have the form

u =
n∑
i=1

Fihi.

In the next calculation we use the symmetry 〈D〈DF, h〉H , g〉H = 〈D〈DF, g〉H , h〉H .
This is easily checked, by direct calculations, taking F = f(I(h1), . . . , I(hn)), for
f ∈ C∞p (Rn). From applying (10.3), the product rule and then (10.3) again we
have that

Dhδ(u) = Dh
( n∑
j=1

FjW (hj)−
n∑
j=1

〈DFj, hj〉H
)

=
n∑
j=1

Fj〈DW (hj), h〉H +
n∑
j=1

〈DFj, h〉HW (hj)−
n∑
j=1

〈D〈DFj, hj〉H , h〉H

=
〈 n∑
j=1

Fjhj, h
〉
H

+
n∑
j=1

〈DFj, h〉HW (hj)−
n∑
j=1

〈D〈DFj, h〉H , hj〉H

= 〈u, h〉H + δ
( n∑
j=1

〈DFj, h〉Hhj
)

= 〈u, h〉H + δ(Dhu).

Hence (v) holds for u ∈ SH .
Next, consider (iv). Let {ek}k∈N ⊂ H be an ON-basis and u, v ∈ SH . We use

duality, (v) for u ∈ SH and some analysis.

E[δ(u)δ(v)] = E[〈u,Dδ(v)〉H ] = E
[〈 ∞∑

i=1

〈u, ei〉Hei, D(δ(v))
〉
H

]
= E

[ ∞∑
i=1

〈u, ei〉HDei(δ(v))
]

=
∞∑
i=1

E[〈u, ei〉H(〈v, ei〉H + δ(Deiv))]

= E[〈u, v〉H ] +
∞∑
i=1

E[〈D〈u, ei〉H , Deiv〉H ]
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The second term is, using 10.4,

E
[ ∞∑
i=1

〈(Du)∗ei, (Dv)ei〉H
]

= E
[ ∞∑
i=1

〈(DuDv)ei, ei〉H
]

= E[Tr(Du ◦Dv)].

We have proved property (iv) for u, v ∈ SH . Notice that Tr(AB) = 〈A∗, B〉H⊗H .
Then by Cauchy-Schwarz inequality Tr(Du ◦Du) ≤ ‖Du‖2

H⊗H . It follows that

(10.5) E[δ(u)2] ≤ E[‖u‖2
H ] + E[‖Du‖2

H⊗H ] = ‖u‖2
1,2,H .

Hence, D1,2 ⊂ Dom(δ). From the construction of SH there exists, for every u ∈
D1,2(H), a sequence {un}n∈N ⊂ SH such that un → u in D1,2(H). But then,
by (10.5), {δ(un)}n∈N converges. Call the limit δ(u). By approximating with
elements of SH one can prove formula (iv) for u, v ∈ D1,2.

Now, consider (v). Let u ∈ D1,2(H) with Dhu ∈ Dom(δ) and {ei}i∈N ⊂ H be
an orthonormal basis. For all F ∈ D1,2 and h ∈ H, we have, by (iv) that,

E[δ(u)δ(hF )] = E[〈u, h〉HF ] + E[Tr(Du ◦D(hF )]

We calculate and then use duality on the second term.

E[Tr(Du ◦D(hF )] = E
[ ∞∑
i=1

〈Du ◦ (h⊗DF )ei, ei〉H
]

= E
[ ∞∑
i=1

〈(Du)h, ei〉H〈DF, ei〉H
]

= E[〈Dhu,DF 〉H ]

= E[δ(Dhu)F ].

Hence, we have that, for all F ∈ D1,2, that

E[δ(u)δ(hF )] = E[(〈u, h〉H + δ(Dhu))F ].

Then, by Lemma 10.2 for G = δ(u) and Y = 〈u, h〉H + δ(Dhu) it follows that

Dhδ(u) = 〈u, h〉H + δ(Dhu)

and δ(u) ∈ Dh,2. The proof is now complete. �

The following proposition will be a useful tool for factoring out scalar random
variables.

Proposition 10.3. If F ∈ D1,2 and u ∈ Dom(δ) such that uF ∈ L2(Ω, H),
then Fu ∈ Dom(δ). Moreover

δ(Fu) = Fδ(u)− 〈DF, u〉H
holds given that the right hand side belongs to L2(Ω).
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When u = h ∈ H, then by Proposition 10.1 (iii) we have that

δ(Fh) = FI(h)−DhF.

This result is true for F ∈ Dh,2, see Nualart [?].

Proof. Let G ∈ S0, i.e., G ∈ S and with compact support. By duality and
the product rule

E[Gδ(Fu)] = E[〈FDG, u〉H ]

= E[〈D(FG)−GDF, u〉H ]

= E[G(Fδ(u)− 〈DF, u〉H)].

Since S0 ⊂ L2(Ω) is dense the result follows. �

11. Malliavin Calculus for Cylindrical Wiener Process

Let U be a real separable Hilbert space. The process {W (t)}t∈[0,T ] is a U -
valued cylindrical Wiener process on (Ω,F ,P). The Itô integral is well defined for
predictable, Hilbert-Schmidt valued integrands {Φ(t)}t∈[0,T ] satisfying

E
[ ∫ T

0

‖Φ(s)‖2
L2(U) ds

]
<∞.

Here, the Hilbert-Schmidt norm for an operator S is given by

‖S‖2
L2(U) =

∞∑
k=1

‖Sek‖2
U ,

where {ek}k∈N is an orthonormal basis for U .
We now want to develop Malliavin calculus for this setup. For Φ1, . . . ,Φn ∈

L2([0, T ], L2(U)) and f ∈ C∞p (Un, U) we would like the following ”smooth” chain
rule to be valid.

Dsf
(∫ T

0

Φ1 dW, . . . ,

∫ T

0

Φn dW
)

=
n∑
i=1

∂if
(∫ T

0

Φ1 dW, . . . ,

∫ T

0

Φn dW
)

Φi(s),

(11.1)

Here ∂if is the Frechèt derivative in the i:th variable. But, the U -valued Itô
integral neither is an isonormal Gaussian process nor has a density. Consequently
we cannot use our machinery from earlier directly or prove an integration by parts
formula such as Lemma 4.3 for this case. We need an other starting point.

Let {ek}k∈N ⊂ U be an ON-basis and, for m ∈ N, Pm be the projection onto the
subspace spanned by {e1, . . . , em}. For Φ ∈ L2([0, T ], L2(U)) define Φm = PmΦPm.

For simplicity we consider F = f(
∫ T

0
Φm dW ), i.e. for n = 1. Then,
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F = f
(∫ T

0

Φm dW
)

= f
( m∑
k=1

∫ T

0

〈Φ∗mek, dW 〉Uek
)

=
∞∑
l=1

〈
f
( m∑
k=1

∫ T

0

〈Φ∗mek, dW 〉Uek
)
, el

〉
U
el

:=
∞∑
l=1

f̃l

(∫ T

0

〈Φ∗me1, dW 〉U , . . . ,
∫ T

0

〈Φ∗mem, dW 〉U
)
el

(11.2)

Here f̃l ∈ C∞p (Rm,R). This motivates why to start with smooth random variables
of the type

F = f
(∫ T

0

〈φ1, dW 〉U , . . . ,
∫ T

0

〈φn, dW 〉U
)
,

where φ1, . . . , φn ∈ L2([0, T ];U), and f ∈ C∞p (Rn;R). Clearly

W (φ) :=

∫ T

0

〈φ, dW 〉U , φ ∈ L2([0, T ], U) := H

is an isonormal Gaussian process, indeed for lu := 〈u, ·〉U , the Itô isometry gives
that

E[W (φ1)W (φ2)] = E
[ ∫ T

0

〈φ1(s), dW (s)〉U
∫ T

0

〈φ2(s), dW (s)〉U
]

= E
[ ∫ T

0

lφ1(s) dW (s)

∫ T

0

lφ2(s) dW (s)
]

=

∫ T

0

〈lφ1(s), lφ2(s)〉L2(U,R) ds

=

∫ T

0

∞∑
k=1

〈φ1(s), ek〉U〈φ2(s), ek〉U ds

=

∫ T

0

〈φ1(s), φ2(s)〉U ds

= 〈φ1, φ2〉H .

The Malliavin calculus developed in previous sections thus applies here. In the
rest of this section we will adopt the notations from earlier to this specific setting.
Let F be of the form as in (11.2). Then

DsF =
∞∑
l=1

m∑
i=1

∂i

(〈
f
( m∑
k=1

∫ T

0

〈Φ∗(s)ek, dW (s)〉Uek
)
, el

〉
U

)
el ⊗ (Φ∗(s)ei)

=
∞∑
l=1

m∑
i=1

〈
f ′
(∫ T

0

Φ(s) dW (s)
)
, el

〉
U
el ⊗ (Φ∗(s)ei)
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Differently from before we define Dh
sF = DsFh for h ∈ U . For a complete

analogue we should have Dh = 〈DF, h〉L2(0,T,U), h ∈ L2([0, T ], U). This will never
be used. We continue with Dh

sF .

Dh
sF =

m∑
i=1

∞∑
l=1

∂i

〈
f
( m∑
k=1

∫ T

0

〈Φ∗(s)ek, dW (s)〉Uek
)
, el

〉
U
el〈Φ∗(s)ei, h〉U

=
m∑
i=1

f ′
(∫ T

0

Φ(s) dW (s)
)
ei〈ei,Φ(s)h〉U

= f ′
(∫ T

0

Φ(s) dW (s)
)

Φ(s)h

This implies that

DsF = f ′
(∫ T

0

Φ(s) dW (s)
)

Φ(s),

as we wanted in (11.1).
Let us define D1,2(U) to be the random variables of the form

G =
∞∑
k=1

Fkek ∈ L2(Ω, U),

where {ek}k∈N ⊂ U is an ON-basis and Fi ∈ D1,2, i = 1, 2, . . . which moreover
satisfy

E
[ ∫ T

0

‖DsG‖L2(U) ds
]

= E
[ ∫ T

0

∥∥∥ ∞∑
k=1

ek ⊗DsFk

∥∥∥2

L2(U)
ds
]

= E
[ ∫ T

0

∞∑
n=1

∞∑
k=1

‖DsFk‖2
U〈ek, en〉U

]
ds

=
∞∑
k=1

∫ T

0

E[‖DsFk‖2
U ] ds <∞

Lemma 11.1. Assume that F ∈ D1,2(U) and let Φ ∈ L2(Ω × [0, T ],L2(U)) be
an adapted process. Then

E
〈
F,

∫ T

0

Φ(s) dW (s)
〉

= E
∫ T

0

Tr
{

Φ∗(s)DsF
}

ds.

Proof. Let {ek}k∈N ⊂ U be an ON-basis. We use Fubini’s theorem and
Malliavin integration by parts.
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E
〈
F,

∫ T

0

Φ(s) dW (s)
〉

= E
〈
F,
∑
j∈N

∫ T

0

〈Φ∗(s)ej, dW (s)〉ej
〉

=
∑
j∈N

E〈F, ej〉H
∫ T

0

〈Φ∗(s)ej, dW (s)〉H

=
∑
j∈N

E
∫ T

0

〈Ds〈F, ej〉H ,Φ∗(s)ej〉H ds

= E
∫ T

0

∑
j∈N

〈(DsF )∗ej,Φ
∗(s)ej〉H ds

= E
∫ T

0

Tr{Φ∗(s)DsF} ds.

Here we used that Tr(AB) = Tr(BA).
�
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