
LÉVY PROCESSES - LECTURE 6

ADAM ANDERSSON

Some proofs are omitted in the notes since their presentation in the book [1] is very clear
but still lengthy. I hope to be able to present them during the lecture. The lecture consist of
material from p. 62-65 in Chapter 1, p. 83 in Chapter 2 and 143-152, 163-165 in Chapter 3 of
[1]. Material from [3] and [2] has been used too.

1. Preparation

Consider a probability space (Ω,F ,P). A family (Ft)t∈T of sub sigma fields of F is called a
filtration if for all s, t ∈ T with s < t

Fs ⊂ Ft.

Let (X(t))t∈T be a stochastic process on a (Ω,F ,P). Then X is called adapted to the filtration
(Ft)t∈T if X(t) is Ft measurable for every t ∈ T .

2. Some Markov theory for Lévy processes

Let Bb(Rd) denote the space of all bounded Borel functions equipped with the uniform norm.
A stochastic process (X(t))t∈T is called a Markov process if for all f ∈ Bb(Rd) and all s < t

E[f(X(t))|Fs] = E[f(X(t))|X(s)].

In words this means that if we want to predict the future, given all information up to time s,
then we can forget what happened before that time.

Lemma 2.1. Let G be a sub-σ-algebra of F . If X and Y are Rd-valued random variables such
that X is G-measurable and Y is independent of G then

E[f(X,Y )|G] = Gf (X), a.s.

for all f ∈ Bb(R2d), where Gf (x) = E[f(x, Y )] for each x ∈ Rd.

Proposition 2.2. Every Lévy process is a Markov process.

Proof. Because of the independent increments and the Lemma

E[f(X(t))|Fs] = E[f((X(t)−X(s)) +X(s))|Fs] = Gf (X(s))

where

Gf (x) = E[f(X(t)−X(s) + x)].

We have that

Gf (X(s)) = E[Gf (X(s))|X(s)] = E[f(X(t)−X(s) +X(s))|X(s)] = E[f(X(t))|X(s)]

and we are done. �

To every Lévy process we relate two families (pt)t∈T and (Tt)t∈T of measures and operators
respectively. For a fixed t ∈ T we let p(t) be the measure corresponding to the law of X(t), i.e.,
p(t) = X(t)−1 ◦P. The operator Tt on Bb(Rd) is defined by the action

(Ttf)(x) = E[f(X(t) + x)] =

∫
Rd

f(y + x)pt( dy) =

∫
Rd

f(y)pt( dy − x).

We will prove that both the families (pt)t∈T and (Tt)t∈T are semigroups with respect to convolu-
tion and composition respectively. Given one of (X(t))t∈T , (pt)t∈T or (Tt)t∈T one can construct
the others.
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From (Tt)t∈T we construct (pt)t∈T as follows:

pt(A) = (TtχA)(0)
(

= P(X(t) ∈ A|X(0) = 0)
)
.

There is an issue of measurability here. The Markov process X and its semigroup (Tt)t∈T are
called normal if Tt maps Bb(Rd) into itself, for every t ∈ T . This holds if and only if the map
x 7→ pt(A− x) is measurable for every t ∈ T and A ∈ BRd . We say that (pt)t∈T is normal if so
is the case. One class of normal homogenous Markov processes is the Feller processes. We will
prove this together with the fact that every Lévy processes is Feller. First we will explore the
relationship between the Lévy process (X(t))t∈T and its convolution semigroup (pt)t∈T .

2.1. The convolution semigroup. A family (pt)t∈T of probability measures is said to converge
weakly to δ0 if

lim
t→0

∫
Rd

f(y) dpt(y) = f(0)

for all f ∈ Cb(R
d).

Proposition 2.3. If X is a stochastic process wherein X(t) has law pt for each t ≥ 0 and
X(0) = 0 (a.s.) then (pt)t∈T is weakly continuous to δ0 if and only if X is stochastically
continuous at t = 0.

Proof. See Proposition 1.4.1 in [1]. �

A family (pt)t∈T of probability measures is said to be a convolution semigroup if for every
s, t ∈ T

ps+t = ps ∗ pt,
meaning that for every A ∈ Bb(Rd),

ps+t(A) =

∫
Rd

ps(A− x)pt( dx) =

∫
Rd

pt(A− x)ps( dx) =

∫
R2d

χA(x+ y)ps( dx)pt( dy).

Proposition 2.4. If X is a Lévy process wherein X(t) has law pt for each t ∈ T then (pt)t∈T
is a weakly continuous convolution semigroup.

Proof. Since X is a Lévy process it satisfies by (L1) X(0) = 0 a.s. and by (L3) the stochastic
continuity. By proposition 2.3 the family (p(t))t∈T is therefore weakly continuous. Since by (L2)
X(s + t) = X(s + t) −X(s) + X(s) and X(s + t) −X(s), X(s) are independent with the laws
pt, ps respectively we have that ps+t = ps ∗ pt. �

Theorem 2.5. If (p(t))t∈T is a weakly continuous convolution semigroup of probability mea-
sures, then there exists a Lévy process X such that, for each t ∈ T , X(t) has law p(t).

Proof [1],[2]. Let Ω = {ω : T → Rd, ω(0) = 0}. Let C denote the algebra of cylinder sets of the
form

IA1,...,An

t1,...,tn = {ω : ω(t1) ∈ A1, . . . , ω(tn) ∈ An},
where t1, . . . , tn ∈ T , A1, . . . , An ∈ BRd and n ∈ N. Let F be the σ-algebra generated by C.
We will define a set function P on C in order to get a consistent family of finite dimensional
distributions for the process. Let

P(IA1,...,An

t1,...,tn ) =

∫
Rd

· · ·
∫
Rd

χA1
(y1)χA2

(y1 + y2) · · ·χAn
(y1 + · · ·+ yn)

× pt1( dy1)pt2−t1( dy2) · · · ptn−tn−1
( dyn)

(2.1)

By the Kolmogorov Extension Theorem the set function P is extended to a measure on F . Define
the canonical Lévy process X(t)(ω) = ω(t). Then X has the finite dimensional distributions

P(X(t1) ∈ A1, . . . , X(tn) ∈ An) = P(IA1,...,An

t1,...,tn ).

and it has univariate laws corresponding to (pt)t∈T . Since, by assumption, this is a convolution
semigroup of probability measures converging weakly to δ0 and by Proposition 2.3, (L1) X(0)=0
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and (L3) stochastic continuity are satisfied. The increments are clearly stationary since their
laws are determined by the semigroup. It remains to prove that the increments are independent.

We claim that for f ∈ Bb(Rd)

E[f(X(t1), . . . , X(tn))] =

∫
Rd

· · ·
∫
Rd

f(y1, y1 + y2, . . . , y1 + · · ·+ yn)

× pt1( dy1)pt2−t1( dy2) · · · ptn−tn−1( dyn).

Notice that for f of the form f = χA1
· · ·χAn

, for A1, . . . , An ∈ BRd , this is nothing but (2.1).
By approximation by simple functions and taking the limit we obtain the claimed equality.

Choose

f(x1, . . . , xn) = exp
(
i

n∑
j=1

〈uj , xj − xj−1〉Rd

)
.

Then

E
[

exp
(
i

n∑
j=1

〈uj , X(tj)−X(tj−1)〉
)]

=

∫
Rd

· · ·
∫
Rd

exp
(
i

n∑
j=1

〈uj , yj〉
)
pt1( dy1)pt2−t1( dy2) · · · ptn−tn−1

( dyn)

=

n∏
j=1

∫
Rd

exp(i〈uj , yj〉)ptj−tj−1
( dyj)

=

n∏
j=1

E[exp(i〈uj , X(tj)−X(tj−1)〉)]

implying independence of increments 1. �

2.2. The transition semigroup. Recall that

(Ttf)(x) = E[f(X(t) + x)] = E[f(X(t))|X(0) = x], t ∈ T, f ∈ Bb(Rd).

If Tt(Bb(Rd)) ⊂ Bb(Rd) then (Tt)t∈T and (X(t))t∈T are called normal.

Theorem 2.6. If X is a time homogenous normal Markov process, then

(1) Tt is a linear operators on Bb(Rd).
(2) T0 = I.
(3) TsTt = Ts+t, for every s, t ∈ T .
(4) f ≥ 0⇒ Ttf ≥ 0, for all t ∈ T .
(5) Tt is a contraction, i.e., ‖Tt‖ ≤ 1, for each t ∈ T .
(6) Tt(1) = 1 for all t ∈ T .

Proof. (1), (2), (4) and (6) are obvious. To prove (3) we use the Markov property of X together
with the law of iterated expectation. For f ∈ Bb(Rd)

(Ts+tf)(x) = E[f(X(t+ s))|X(0) = x]

= E[E[f(X(t+ s))|Fs]|X(0) = x]

= E[E[f(X(t+ s))|X(s)]|X(0) = x]

= E[(Ttf)(X(s))|X(0) = x]

= (Ts(Ttf))(x).

Notice here that we used that Tt is normal since if x 7→ (Ttf)(x) were not bounded and Borel
measurable then the last line would not be well defined.

1The elements of a random vectors are independent if and only if its characteristic function is the product of

the characteristic functions of its elements
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For (5)

‖Ttf‖ = sup
x∈Rd

|E[f(X(t))|X(s) = x]|

≤ sup
x∈Rd

|E[|f(X(t))|
∣∣X(s) = x]|

≤ sup
x∈Rd

|f(x)|

= ‖f‖
�

A homogenous Markov process is said to be a Feller process if

Tt(C0(Rd)) ⊂ C0(Rd)

for all t ∈ T and
lim
t→0
‖Ttf − f‖ = 0

for all f ∈ C0(Rd). The last statement is the same as saying that Tt is a strongly continuous
semigroup on C0(Rd). We say that Tt is a Feller semigroup if the same conditions holds,
regardless of its connection to X.

Theorem 2.7. If X is a Feller process, then its transition probabilities pt are normal.

Proof [2]. Since Tt is Feller, for every x ∈ Rd the map f 7→ (Ttf)(x) is a positive linear form
on C0(Rd). By Riesz representation theorem there exists a unique Radon measure qt(·, x) such
that

(Ttf)(x) =

∫
Rd

f(y)qt( dy, x)

for every f ∈ C0(Rd). The map x 7→
∫
f(y)qt( dy, x) is in C0(Rd) by the Feller property and

is thus measurable. Take an increasing sequence of functions (fn)n∈N ⊂ C0(Rd) such that
fn → χA. Then by a version of the Monotone Class Theorem the mappings

x 7→
∫
Rd

fn(y)qt( dy, x)

converges to a measurable function x 7→ qt(A, x). Let (pt)t∈T be the transition probabilities of
X. Since

(Ttf)(x) =

∫
Rd

f(y + x)pt( dy)

∫
Rd

f(y)pt( dy − x)

we can identify that pt = qt(·, 0) and pt(· − x) = qt(·, x). Since qt is measurable in the right
sense, so is pt. �

Theorem 2.8. Every Lévy process is a Feller process.

Proof. See Theorem 3.1.9 in [1]. �

3. Representation of semigroups and generators by pseudo-differential
operators

This is Section 3.3.3 in [1]. The presentation is very clear an need no clarifications, by means
of lecture notes.
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