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Abstract

This thesis deals with distributional differentiability of the solution (X,Y,Z) to a quadratic
non-degenerate forward-backward SDE. The differentiability is considered with respect to
the initial value of the solution X to the coupled forward SDE. It is proved that the solution
process Y is weakly differentiable, and that the solution process Z can be represented using the
distributional gradient of Y. This result is new in the way that it relaxes technical conditions
imposed by previous authors in a significant way and in a way that is important e.g., in the
applications described below. The proof makes use of Dirichlet space techniques to conclude
that Y is a member of a local Sobolev space.

Our results are applied to derive new results in mathematical finance and insurance theory.
When derivatives are written on non-tradeable underlying assets, such as weather, a strongly
correlated tradeable asset price process is used instead of the non-tradeable one to partially
hedge the risk of the derivative. This concept is known as cross hedging. Applications for
non-differentiable European type pay off functions are given and explicit hedging strategies
are derived using a distributional gradient.

Keywords: Backward stochastic differential equation; Distributional differentiability; Dirich-
let space; Cross hedging; Insurance derivative; Weather derivative; Explicit hedging strategy.
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and Gonçalo Dos Reis for giving me fruitful feedback on my work via mail. I very much
appreciate the way mathematics is done in Berlin. Thank you also PhD student Mattias
Sundén and professor Stig Larsson for answering my questions in a clear and precise way.
Finally, I would like to thank my wife Fereshteh and my daughter Alice for their support and
patience.

iii



iv



Contents

1 Introduction 1

2 Backward stochastic differential equations 5
2.1 Forward-backward stochastic differential equations . . . . . . . . . . . . . . . 5
2.2 BSDEs with random Lipschitz generators . . . . . . . . . . . . . . . . . . . . 7
2.3 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Weak derivatives and Sobolev spaces 9
3.1 The Sobolev space H1

loc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Two Dirichlet spaces d and d̃ . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Densities and non-degeneracy of SDEs . . . . . . . . . . . . . . . . . . . . . . 11

4 Weak differentiability of quadratic non-degenerate FBSDEs 13
4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Some useful results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Application to insurance and finance: Optimal cross hedging 27
5.1 Assumptions and market model . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Solution to the optimal cross hedging problem via a FBSDE . . . . . . . . . . 30
5.3 Explicit hedging strategy using the weak price gradient . . . . . . . . . . . . 32

6 Conclusion and discussion 33

v



vi



Chapter 1

Introduction

Imagine that you are the owner of a Swedish ice cream factory. Then you are exposed to
weather risk. A warm and sunny summer, people will spend their time on the beach, with
an ice cream in their hand. A cold or rainy summer, they will complain over the Swedish
weather or perhaps travel to a warmer place. They will anyway not eat ice cream to a great
extent. It is clear that your economic gain, from selling ice cream, depends on the weather.
So, how can you protect yourself against such risks? Insurance are often for material or
economical losses, not for default income, due to bad weather. One way could be to write a
financial contract, like an option, on some weather index. Accumulated average temperatures
or sun hours during a summer could be suitable indices. Then the risk will be spread. In case
of unfavorable summer weather, you get money according to the contract. Under favorable
weather you get nothing. In either case you pay the premium for the contract. You expose
yourself of a lower risk.

Say, that you choose to buy, or get short in, a European call option with strike price
K, written on some (artificial) sunshine index. The index will have value XT at time T of
maturity. The random income at time T is given by

(XT −K)+ = max(0, XT −K) := F (XT ).

How shall the contract be priced? Now, we must turn the perspective to the seller of the
derivative, having the long position. Her obligation to pay F (XT ) at time T , implies a
risk. If the underlying X were a tradable asset she would hedge the risk of the derivative.
This would be done by investing in the underlying asset according to an optimal hedging
strategy. The hedged risk would be considered when she sets the premium, by the machinery
of Black-Scholes pricing theory.

It would be nice if sunshine was tradable, but it isn’t. She can not buy herself a portfolio
of sunshine. Pricing without hedging would imply a greater risk, and she would not last long
unless she gets a high premium. A way to get around this, for her, could be to invest in
a tradable asset, correlated to sunshine. In such a way the risk could partially be hedged
by investing in the correlated asset. Assets possibly correlated to sunshine are for example
heating oil futures or electricity futures. The concept is known as cross hedging, and the kind
of derivatives, written on non-tradable underlyings, are called insurance derivatives.

Actors more likely to buy insurance derivatives are energy companies, sensitive to cold
summers and warm winters. Chicago Mercantile Exchange was the first in 1997 to offer
derivatives written on accumulated heating degree days (cHDD) and cooling degree days
(cCDD). A heating degree day (HDD) and (CDD) is given by
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HDD = max(0, 18− T ) and CDD = max(0, T − 18),

respectively, where T is the average temperature during a day. Statistics has shown that
when the average temperature is 18 degrees Celsius the energy consumption is the lowest.
When it is higher, energy is used for cooling and when it is lower, energy is used for heating.
The cHDD index is given by

cHDD =
31∑

i=1

HDDi

where HDDi is the daily HDD’s 31 days back in time. It can be seen as a moving average
process. The cCDD index is defined analogously.

Historical weather data is today used to price cHDDs. The distribution of the outcome
of the index is estimated and thereafter the distribution of the payoff. The derivative is
priced by the expected payoff, discounted at the risk free rate [8]. This does not involve cross
hedging or any hedging at all.

Hedging can be static. Then an investment is done at time zero, and no investment is done
thereafter. Hedging can also be dynamic. Then the hedger invests according to a hedging
strategy. The number of shares invested changes in time, as information is revealed, and new
computations can be done. An approach to dynamic cross hedging and pricing is by setting
up a stochastic control problem. An optimal strategy is sought that maximizes the expected
utility of that investment. This can be done analytically by solving the Hamilton-Jacobi-
Bellman partial differential equation [1] or by a stochastic approach using forward-backward
stochastic differential equations (FBSDE) [2]. The former approach is limited to the case of
one-dimensional assets. The latter approach can be applied with multiple-dimensions both
for the tradable and the non-tradable assets. One drawback of the FBSDE approach is that
the payoff function must be smooth. Hence, European put and call options can not be priced
and hedged with that approach. In this thesis mathematical results are proved, that makes it
possible to relax the smoothness property of the payoff function. With these results European
put and call options can be priced and hedged, at least theoretically, when the non-tradable
process satisfies a non-degeneracy condition. Suitable numerics must be used to implement
this.

The mathematical results are about differentiability in the weak sense of FBSDEs. They
rests on stochastic calculus, some distribution theory, measure theory and the theory of two
specific Dirichlet spaces. Knowledge in stochastic calculus is assumed, of the reader, as well
as some knowledge about measure theory and Lebesgue integration. Familiarity with Sobolev
spaces and distribution theory makes the reading considerably easier.

The work is organized as follows:
Chapter 2 deals with BSDEs and FBSDEs. The first section introduces the subject. The

second section contains more specific result needed in this thesis. The chapter ends with
some history of the theory.

Chapter 3 first gives an introduction to weak derivatives and Sobolev spaces. Section
two introduces Dirichlet spaces, essential for the proofs of Chapter 4. The chapter ends with
a section about densities for stochastic differential equation and explains the concepts of
non-degeneracy of SDEs.

Chapter 4 contains the mathematical results in this thesis. It starts with assumptions
and a section with useful results. In Section 3 the main results are stated and proved.
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Chapter 5 is about optimal cross hedging. The chapter presents the market model and
solution approach of finding prices and cross hedging strategies of insurance derivatives. In
the last section the results from Chapter 4 are applied to derive an explicit expression for the
hedging strategies.

Chapter 6 contains a discussion and conclusion.
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Chapter 2

Backward stochastic differential
equations

Backward stochastic differentiable equations have proved to be useful in optimal stochastic
control theory, mathematical finance and partial differential equations (PDEs). In finance the
control processes usually are somehow related to investment strategies. The first section of
this chapter introduces BSDEs and FBSDEs present the intimate connection between BSDEs
and the martingale representation theorem. This connection is crucial for the understanding
of BSDEs. Section 2 introduces BSDEs with random Lipschitz continuous generator. An
existence and uniqueness result is also presented. All results presented in this chapter are
well known. The last section presents some history of BSDEs.

2.1 Forward-backward stochastic differential equations

Let Wt be a d-dimensional Wiener process on a filtered probability space (Ω,F , {Ft}t∈[0,T ],P).
The filtration {Ft}t∈[0,T ] is the natural filtration of Wt completed by the P-null sets of Ω. A
forward backward stochastic differential equation (FBSDE) is a system of equations,





dXt = b(t,Xt)dt+ σ(t,Xt)dWt,

dYt = −f(t,Xt, Zt)dt+ ZtdWt, t ∈ [0, T ],

X0 = x,

YT = g(XT ).

(2.1)

The coefficients b : [0, T ] × Rm → Rm and σ : [0, T ] × Rm → Rm×d are supposed to be
measurable and satisfy Lipschitz conditions and linear growth conditions in the space variable,
i.e. ∃C ≥ 0:

{
|b(t, x)− b(t, x̄)|+ |σ(t, x)− σ(t, x̄)| ≤ C|x− x̄|,
|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|) (2.2)

∀(t, x, x̄) ∈ [0, T ]×Rm×Rm. The equation forX is a forward Itô SDE. Notice that σ(t,Xt)dWt

is a matrix multiplication. The norm |σ| is the Frobenius norm

|σ| =
√

trace(σ∗σ), (2.3)
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where σ∗ is the transpose of σ. The equation for Y is known as a backward stochastic
differential equation. The function f : Ω × [0, T ] × Rm × Rd → R is called the generator of
the FBSDE and g : Rm → R determines the terminal value. The equation for Y is also a
forward SDE, but the ”control” process Z controls it to satisfy the terminal value. It will
be shown below that Y has a deterministic initial value. The process X is m-dimensional,
the process Y is one-dimensional and the process Z is d-dimensional. The triple (X,Y, Z) is
called the solution of FBSDE (2.1).

To be able to understand BSDEs recall the martingale representation theorem.

Theorem 2.1. [20] The martingale representation theorem. Suppose that Mt is a
square integrable martingale w.r.t. Ft. Then there exist a unique, predictable, square inte-
grable and d-dimensional process Zt such that:

Mt = E[M0] +
∫ t

0
ZrdWr

almost surely, for all t ∈ [0,∞).

The processes Y and Z are defined as follows. Define the martingale

Mt = E
[
g(XT ) +

∫ T

0
f(r,Xr, Zr)dr

∣∣∣∣Ft
]

for t ∈ [0, T ]. (2.4)

Here, Mt is under suitable assumptions, presented later, square integrable. The martingale
representation theorem therefore implies the existence of a unique predictable d-dimensional
process Zt such that:

Mt = M0 +
∫ t

0
ZrdWr. (2.5)

Let now,

Yt = Mt −
∫ t

0
f(r,Xr, Zr)dr.

It follows that:




Yt = M0 −
∫ t

0
f(r,Xr, Zr)dr +

∫ t

0
ZrdWr

M0 = E
[
g(XT ) +

∫ T

0
f(r,Xr, Zr)dr

] (2.6)

as in (2.1). Equations (2.4) and (2.5) considered together is the third equation that determines
(X,Y, Z). Notice that Y has a deterministic initial value M0. Since

∫ t
0 f(r,Xr, Zr)dr is Ft-

measurable (2.6) and (2.4) gives that

Yt = E
[
g(XT ) +

∫ T

t
f(r,Xr, Zr)dr

∣∣∣∣Ft
]
. (2.7)

Further, YT = M0 −
∫ T

0 f(r,Xr, Zr)dr +
∫ T

0 ZrdWr = g(XT ) from (2.6) and (2.7). Adding
0 = g(XT )−M0 +

∫ T
0 f(r,Xr, Zr)dr−

∫ T
0 ZrdWr to (2.6) the most common form of a BSDE

is obtained:
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Yt = g(XT ) +
∫ T

t
f(r,Xr, Zr)dr −

∫ T

t
ZrdWr, t ∈ [0, T ]. (2.8)

The process {Xt, Yt, Zt}t∈[0,T ] is a Markov process. Conditioned on Xt = x, for (t, x) ∈
[0, T ]× Rm, the FBSDE is given by:





Xt,x
s = x+

∫ s

t
b(r,Xt,x

r )dr +
∫ s

t
σ(r,Xt,x

r )dWr

Y t,x
s = g(Xt,x

T ) +
∫ T

s
f(r,Xt,x

r , Zt,xr )dr −
∫ T

s
Zt,xr dWr, s ∈ [t, T ].

(2.9)

Equation (2.9) will be denoted FBSDE(b, σ, g, f). The initial value is suppressed in the
notation since it throughout this thesis will be an arbitrary vector xRm. Let ξ be a square
integrable and FT -measurable random variable and f : Ω × [0, T ] × Rd → R be a generator
function. The BSDE

Yt = ξ +
∫ T

t
f(r, Zr)dr −

∫ T

t
ZrdWr, t ∈ [0, T ]. (2.10)

will be denoted BSDE(ξ, f). The process Z is determined analogously as for a FBSDE. When
nothing is else is said the solutions to FBSDE(b, σ, g, f) and the solution to BSDE(ξ, f) will
be denoted (X,Y, Z) and (Y,Z), respectively. A forward SDE with coefficients b and σ will
be denoted SDE(b, σ).

2.2 BSDEs with random Lipschitz generators

Let {Ht}t∈[0,T ] be an integrable, predictable and positive process. The process
∫ ·

0 HsdWs is
called a bounded mean oscillation (BMO) martingale if

E
[∫ T

τ
H2
sds

∣∣∣∣Fτ
]
≤ D (2.11)

almost surely, for all stopping times τ ∈ [0, T ] and some constant D > 0. The small-
est D > 0 that satisfies (2.11) is called the BMO norm of

∫ ·
0 HsdWs and will be denoted

‖ ∫ ·0 HsdWs‖BMO.
Let’s introduce the following process spaces:

• Sp(Rk) is the space of all k-dimensional predictable processes {Yt}t∈[0,T ] such that
E[supt∈[0,T ] |Yt|p] <∞,

• Hp(Rd) is the space of all d-dimensional predictable processes {Zt}t∈[0,T ] such that
E[(
∫ T

0 |Zt|2dt)p/2] <∞,

• S∞(R) = ∪p>2Sp(R), those processes are bounded for all t, P-almost surely.

• H∞(Rd) = ∪p>2Hp(Rd).
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Theorem 2.2. [6] (Existence and uniqueness for BSDEs with random Lipschitz
condition) Assume that BSDE(ξ, f) satisfies the random Lipschitz condition

|f(t, z)− f(t, ẑ)| ≤ Ht|z − ẑ|, ∀(t, z, ẑ) ∈ [0, T ]× Rd × Rd, (2.12)

where Ht is integrable, predictable, non-negative and
∫ ·

0 HtdWs is a BMO-martingale. Further
assume that for some p∗ > 1 it holds that

E

[
|ξ|p∗ +

(∫ T

0
|f(s, 0)|ds

)p∗]
<∞ (2.13)

and |f(t, z)| ≤ g(t) + Ht|z|, ∀(t, z) ∈ [0, T ] × Rd, where g : [0, T ] × Ω → R+ is a function
satisfying

E

[(∫ T

0
g(s)ds

)p∗]
<∞.

Then there exist a unique solution (Y, Z) ∈ Sp(R)×Hp(Rd) for 1 < p < p∗.

2.3 History

In 1978 Bismut [3] introduced a linear BSDE, as the adjoint equation to the maximum
principle, in optimal stochastic control theory. First, in 1990, Pardoux and Peng published a
paper [21] were they proved the existence of an adapted solution, to a BSDE, in the case of
Lipschitz continuous generator. After that, the subject grew rapidly. The awareness, of the
possibility to use BSDEs in finance, increased. In 1997 Karoui, Peng and Quenez published an
important and long reference paper on BSDEs [12], containing theory as well as applications
in finance. It is still frequently referred to in papers published today. In 2000 Kobylanski
published an important paper [13] on quadratic BSDEs and the connection to viscosity and
Sobolev solutions to non linear parabolic PDEs. That paper too is still frequently referred to
in papers dealing with quadratic BSDEs. A large amount of other papers has been published
on the subject. There are a lot of variations, BSDEs driven by Levy processes, BSDEs
with jumps or delays, numerics of BSDEs, etc.. Much of the motivation has come from
mathematical finance. BSDEs are useful in utility maximization problems in incomplete
markets, i.e., markets were there are risks not possible to hedge completely. So far there
hasn’t been written any books about the subject. However there are two conference texts
namely [11] from 1997 and [16] from 1999. The paper in this line that that is fundamental
for this thesis is [2] ”Pricing and hedging of derivatives based on non-tradable underlyings”
by Ankirchner, Imkeller and Dos Reis.
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Chapter 3

Weak derivatives and Sobolev
spaces

In the first section of this chapter so called weak or distributional derivatives will be intro-
duced. Weak derivatives need not be functions but rather distributions. The function spaces
that functions with weak partial derivatives live in, namely Sobolev spaces is also introduced.
The main tool for proving that the solution Y of a FBSDE is a member of a Sobolev space is
the concept of Dirichlet spaces. Those will be introduced in the second section together with
a useful result. In the third section, the results of section two will be applied and extended
to stochastic differential equations. Results for degenerate SDEs with random initial value
will be presented together with an introduction to non-degenerate SDEs. All the results in
this chapter are well-known.

3.1 The Sobolev space H1
loc

A function ψ : Rm → R is said to have compact support if there is a compact set K ⊂ Rm
such that ψ = 0 outside K. A continuously differentiable function with compact support is
called a test function. If g : R→ R is a square integrable continuously differentiable function,
then integration by parts applies

∫

K
g
dψ

dxi
dx = −

∫

K

dg

dxi
ψdx. (3.1)

The boundary term disappears since ψ vanishes on the boundary of K. This operation is
obviously possible when g is continuously differentiable. If g is not continuously differentiable
but there exist a function dg/dxi in

L2(K) =
{
f : K → R :

∫

K
|f(x)|2 dx <∞

}

such that (3.1) holds, then dg/dxi is called a weak partial derivative. If this derivative exists,
then it is unique in L2(K) by the Riesz representation theorem.

The space L2
loc(Rm) is the space of functions from Rm to R that are Lebesgue square

integrable on every compact subset K ⊂ Rm. Define the local Sobolev space H1
loc(Rm) by

H1
loc(Rm) =

{
f ∈ L2

loc(Rm) :
∂

∂xi
f ∈ L2

loc(Rm), 1 ≤ i ≤ m
}
.

9



(see [15]). This space is of interest in this thesis as it will be proved that Y ∈ H1
loc(Rm) where

(X,Y, Z) is the solution to a certain quadratic FBSDE.
The non-differentiable functions considered in this text will be continuously differentiable

almost everywhere. A subset of those functions are the locally Lipschitz continuous functions,
and a subset of those functions in turn are the globally Lipschitz continuous functions.

Example 3.1. The weak derivative of the payoff function of a European call option F (x) =
max(0, x−K), K ∈ R, is the equivalence class of functions

dF

dx
(x) =





0, x < K
C, x = K
1, x > K

for arbitrary C ∈ R. This makes better sense in L2(R) where dF/dx is unique rather than ar-
bitrary since objects in L2 are equivalence classes up to Lebesgue almost everywhere equality.
On the other hand, if C is fixed then dF/dx is called a version.

3.2 Two Dirichlet spaces d and d̃

Let h : Rm −→ R be a fixed, continuous and positive function satisfying
∫
Rm h(x)dx = 1 and∫

Rm |x|2h(x)dx <∞. The space d is defined by

d =
{
f ∈ L2(Rm, h) :

∂

∂xi
f ∈ L2(Rm, h), 1 ≤ i ≤ m

}
,

where

L2(Rm, h) =

{
f : Rm → R :

(∫

Rm
|f(x)|2h(x)dx

)1/2

:= ‖f‖L2(Rm,h) <∞
}
.

The derivative is considered in the weak sense. The space d equipped with the norm

‖f‖d =

[
‖f‖2L2(Rm,h) +

m∑

i=1

‖ ∂
∂xi

f‖2L2(Rm,h)

]1/2

is a so called classical Dirichlet space. This space is a Hilbert space and a subspace of the
local Sobolev space H1

loc(Rm).
Next, define an enlarged probability space (Ω̃, F̃ , P̃), where Ω̃ = Ω×Rm, F is the product

σ-algebra of F and the Borel σ-algebra of Rm and P̃ is the product measure P × hdx. The
expected value on (Ω̃, F̃ , P̃) will be denoted Ẽ. Let

L2(Ω̃) =

{
f : Ω× Rm → R : ‖f‖

L2(eΩ)
= Ẽ[|f |2]1/2 =

(∫

Rm
E[|f(x)|2]h(x)dx

) 1
2

<∞
}
,

and D̃i be the space of functions u : Ω × Rm → R that has a version ũ such that ε 7→
ũ(ω, x+εei) is locally absolutely continuous ∀(ω, x) ∈ Ω̃, ε ∈ R, 1 ≤ i ≤ m. Here ei is the i-th
unit vector in Rm. Locally absolutely continuous functions are continuously differentiable
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almost everywhere. Lipschitz continuous functions satisfies this property. Further define the
operator ∇i on D̃i by

∇iu(x, ω) = lim
ε→0

ũ(x+ εei, ω)− ũ(x, ω)
ε

for ũ being a locally absolutely continuous version of u.
Now we are ready to define a second Dirichlet space d̃ on (Ω̃, F̃ , P̃) by

d̃ =

{
f ∈ L2(Ω̃)

⋂(
m⋂

i=1

D̃i

)
: ∇if ∈ L2(Ω̃), 1 ≤ i ≤ m

}
,

The space d̃ equipped with the norm

‖ · ‖ed =

[
‖ · ‖2

L2(eΩ)
+

m∑

i=1

‖∇i · ‖2L2(eΩ)

] 1
2

is a so called general Dirichlet space.
In Chapter 4 d̃ will be used in the proof that the process Y of the solution (X,Y, Z) of a

FBSDE belongs to d. The following proposition connects the two spaces:

Proposition 3.2. [5] If u ∈ d̃, then

u(·, ω) ∈ d and
∂

∂xi
u(x, ω) = ∇iu(x, ω) P̃− a.s., 1 ≤ i ≤ m.

3.3 Densities and non-degeneracy of SDEs

This section extends the results from the previous section, to stochastic differential equations.
It also explains important properties of certain SDEs. Consider for t ∈ [0, T ] the SDE(b, σ).
The coefficients b : [0, T ]×Rm −→ Rm and σ : [0, T ]×Rm −→ Rm×d satisfies global Lipschitz
and linear growth conditions (2.2). The SDE is said to be non-degenerate if, for some constant
C > 0,

ξ∗σ(t, x)σ∗(t, x)ξ ≥ C|ξ|2, ∀(t, x, ξ) ∈ [0, T ]× Rm × Rm (3.2)

holds. Here, σ∗ and ξ∗ denotes the transpose of σ and ξ.

Theorem 3.3. [4] Given assumption (3.2), Xx
t has a density for all (t, x) ∈ (0, T ]× Rm.

Example 3.4. Consider the SDEs:

dXt =
(

1 0
0 1

)
dWt, dX̂t =

(
1 0
1 0

)
dWt,

for a 2-dimensional Wiener process Wt and X0 = X̂0 = 0. The first has solution Xt =
(W 1

t ,W
2
t ) and the second X̂t = (W 1

t ,W
1
t ). It is clear that Xt will evolve freely in the entire

R2-plane and that X̂t will evolve along the line L = {(x, x) : x ∈ R} ⊂ R2. X is non-
degenerate and X̂ is degenerate. This is a trivial example, but given the non-degeneracy
condition (3.2), the paths of the solutions to SDE(b, σ), will not be limited to any Lebesgue
null-set of Rm.
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Example 3.5. Later in the thesis, non-degeneracy will be used to conclude that

E
[|ξ1(XT )− ξ2(XT )|] = 0, (3.3)

where ξ1 : Rm → R and ξ2 : Rm → R satisfies ξ1(x) = ξ2(x) except at Lebesgue null-
sets of Rm. Suppose that X and X̂ are the processes in the preceding example and that
ξ1(x) = ξ2(x) except on the line L. Then (3.3) holds for X but not for X̂. The conclusion
would be impossible for any degenerate SDE regardless of what null-set ξ1(x) and ξ2(x) differs
on.
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Chapter 4

Weak differentiability of quadratic
non-degenerate FBSDEs

In this chapter the main mathematical contributions of this thesis will be presented. Results
for classical differentiability of the solution process Y of a quadratic FBSDE, proved in [2],
will be generalized. In the first section our technical assumptions will be presented and in
the second section a collection of results that will be needed are listed. In the third section,
weak differentiability of Y will be stated and proved when the coupled forward SDE is non-
degenerate. A useful representation result is also proved. In the last section the same will be
proved when the forward SDE is degenerate. In that case a slightly different FBSDE will be
considered and finally proved to represent the weak gradient of Y .

4.1 Assumptions

Consider FBSDE(b, σ, g, f). The Coefficients b and σ are assumed to satisfy Lipschitz and
linear growth condition (2.2) together with non-degeneracy condition (3.2). The terminal
function g : Rm → R is assumed to be deterministic, bounded, measurable and Lipschitz
continuous. The generator f : [0, T ]×Rm×Rd → R is assumed to be measurable, continuously
differentiable in x and z and satisfy





|f(t, x, z)| ≤ C(1 + |z|2) a.s.,
|f(t, x, z)− f(t, x̄, z)| ≤ C(1 + |z|)|x− x̄| a.s.,
|∇zf(t, x, z)| ≤ C(1 + |z|) a.s.,
|∇xf(t, x, z)−∇xf(t, x̄, z̄)| ≤ C(1 + |z|+ |z̄|)(|x− x̄|+ |z − z̄|) a.s.,

for some constant C > 0, ∀(t, x, x̄, z, z̄) ∈ [0, T ]×Rm×Rm×Rd×Rd. When these assumptions
holds the FBSDE is said to satisfy assumption (A). We call the FBSDE(b, σ, g, f) under
assumption (A) quadratic, to distinguish it from generators globally Lipschitz continuous in
z.
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4.2 Some useful results

The following moment estimate will be the main tool when proving our main result:

Lemma 4.1. [2](Moment estimate for BSDEs with random Lipschitz generator)
Consider the BSDE(ξ, f). Suppose that condition (2.12) holds and that for all β ≥ 1 we have∫ T

0 |f(s, 0)|ds ∈ Lβ(P). Let p > 1. Then there exist constants q > 1 and C > 0, depending
only on p, T and the BMO-norm of

∫ ·
0 Htdt where {Ht}t∈[0,T ] is the random Lipschitz bound,

such that we have

E

[
sup
t∈[0,T ]

|Yt|2p
]

+ E
[
(
∫ T

0
|Zs|2ds)p

]
≤ C

(
E
[
|ξ|2pq + (

∫ T

0
|f(s, 0)|ds)2pq

]) 1
q

.

The following three results will also be of great importance.

Lemma 4.2. [17] Consider the FBSDE(b, σ, g, f). Given assumption (A), the process
∫ ·

0 Z
t,x
r dWr

is a BMO-martingale. The BMO-norm only depends on the terminal value, the function
f(s,Xt,x

s , 0), and the duration T − t.
Lemma 4.2 shows that if Zt,xs is the random Lipschitz bound for a generator of a BSDE,

then the moment estimate Lemma 4.1 can be applied. This will be used frequently in the
proof of the main results of this thesis.

Proposition 4.3. Under assumption (A) the FBSDE(b, σ, g, f) satisfies a random Lipschitz
condition with BMO bound. Moreover, the solution (X,Y, Z) is unique with (X,Y, Z) ∈
S∞(Rm)× S∞(R)×H∞(Rd).

Proof. First, X satisfies the usual Itô conditions and is hence well defined and unique. Propo-
sition 4.7 guaranties X ∈ Sp(Rm) for all p ≥ 2, i.e., X ∈ S∞(Rm). Next, the generator is
differentiable and hence by the mean value theorem and assumption ∇zf(t, x, z) ≤ C(1+ |z|),
∃λ ∈ [0, 1] :

|f(t, x, z)− f(t, x, ẑ)| ≤ |∇zf(t, x, λz + (1− λ)ẑ)||z − ẑ| ≤ C(1 + |λz + (1− λ)ẑ|)|z − ẑ|

≤ C(1 + |z|+ |ẑ|)|z − ẑ|.

This implies that the generator satisfies a random Lipschitz condition with Lipschitz bound
C(1 + |Zt,xs | + |Ẑt,xs |). Lemma 4.2 implies that

∫ ·
0 Z

t,x
r dWr is a BMO martingale and hence

the bound satisfies the assumption of Theorem 2.2. Moreover the boundedness assumption
on g and f(t, 0, 0) implies (Y, Z) ∈ S∞(R)×H∞(Rd) by Theorem 2.2.

Lemma 4.4. Consider the FBSDE(b, σ, g, f). Given assumption (A), the mapping x 7→ Y t,x
s

is Lipschitz continuous for all t ∈ [0, T ] and s ∈ [t, T ].

Proof. The Lemma as Lemma 6.3 in [2] was stated under the stronger assumptions of Theorem
4.5. However, this was done for notational simplicity. The proof carries over to our setting
without changes.

Next follows two important results on classical differentiability for quadratic FBSDEs.
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Theorem 4.5. [2] Consider the FBSDE(b, σ, g, f). Assume (A), with the additional re-
quirements that the terminal function g is twice continuously differentiable and b and σ are
continuously differentiable in x with Lipschitz continuous first derivative. Then for every
fixed t ∈ [0, T ] Xt,x

s and Y t,x
s are continuous in s and continuously differentiable in x. More-

over, there exist a process ∇xZt,xs ∈ H2(Rd) such that (∇xY t,x
s ,∇xZt,xs ), for s ∈ [t, T ], is the

solution to the BSDE:

∇xY t,x
s = ∇xg(Xt,x

T )∇xXt,x
T −

∫ T

s
∇xZt,xr dWr

+
∫ T

s
[∇xf(r,Xt,x

r , Zt,xr )∇xXt,x
r +∇zf(r,Xt,x

r , Zt,xr )∇xZt,xr ]dr

Theorem 4.6. Let the assumptions of the previous theorem hold. Then for ∀s ∈ [t, T ] and
u(t, x) := Y t,x

t

Zt,xs = ∇xu(s,Xt,x
s )σ(s,Xt,x

s )

for almost all t ∈ [0, T ], P-almost surely.

Proof. The theorem was stated [2] with the extra assumption of the existence of a sequence
{fn}n≥1, of generators, Lipschitz continuous in z, converging locally uniformly to f . The
assumption is not needed since it is always possible to find such a sequence, when f is
quadratic.

The following estimate for classical SDEs will be needed.

Theorem 4.7. [14] Consider the SDE(b, σ) with initial value x : Ω → Rm. Assume that
b : Ω × [0, T ] × Rm → Rm and σ : Ω × [0, T ] × Rm → Rm×d are Lipschitz continuous in the
space variable. Then for any p ≥ 2, there exist a constant C, only depending on p, T and the
Lipschitz bounds of b and σ, such that:

E

[
sup
r∈[0,T ]

|Xr|p
]
≤ C

(
E [|x|p] + E

[∫ T

0
(|b(r, 0)|p + |σ(r, 0)|p)dr

])
.

Finally, the following inequality will be used frequently.

Lemma 4.8. For xi, . . . , xk ∈ V , where (V, ‖ · ‖) is a normed vector space it holds that for
p ≥ 0, ‖x1 + . . .+ xk‖p ≤ kp(‖x1‖p + . . .+ ‖xk‖p).
Proof. ‖x1 + . . .+ xk‖p ≤ (kmax(‖x1‖, . . . , ‖xk‖))p ≤ kp(‖x1‖p + . . .+ ‖xk‖p).

15



4.3 Main result

In this Section weak differentiability of FBSDE(b, σ, g, f) will be stated and proved under as-
sumption (A). The following FBSDE is known as the variational equation of FBSDE(b, σ, g, f).





Φt,x
i,s = ei +

∫ s

t
∇xb(r,Xt,x

r )Φt,x
i,rdr +

d∑

j=1

∫ s

t
∇xσj(r,Xt,x

r )Φt,x
i,rdW

j
r

Ψt,x
i,s = ∇xg(Xt,x

T )Φt,x
i,T +

∫ T

s
(∇xf(r,Xt,x

r , Zt,xr )Φt,x
i,r

+∇zf(r,Xt,x
r , Zt,xr )Γt,xi,r )dr −

∫ T

s
Γt,xi,rdWr, i = 1, . . . ,m.

(4.1)

for s ∈ [t, T ]. It will be denoted ∇iFBSDE(b, σ, g, f), i = 1, . . . ,m, componentwise or
∇FBSDE(b, σ, g, f) otherwise. Here, ∇xb, ∇xσ and ∇xg are the gradients of b, σ and g
in the weak sense. The index i denotes the i:th column of Φ, Ψ and Γ. Further, ∇xσj de-
notes the gradient of the j’th row of σ. If g, σ, g, X, Y and Z were differentiable w.r.t. x
then Φ, Ψ and Γ would be the gradients of X, Y and Z. The following Theorem states that
Y t,x
s is weakly differentiable with respect to x and that Ψt,x

s is its weak gradient.

Theorem 4.9. Let assumption (A) hold. Then,

(i) the function, x 7→ Y t,x
s belongs to H1

loc(Rm) P-a.s., ∀t ∈ [0, T ], ∀s ∈ [t, T ].

(ii) the weak gradient ∇xY t,x
s = Ψt,x

s , for almost all x P-a.s., ∀t ∈ [0, T ],∀s ∈ [t, T ], where
(Φt,x,Ψt,x,Γt,x) ∈ S∞(Rm×m) × S∞(R1×m) × H∞(Rd×m) is the unique solution to
∇FBSDE(b, σ, g, f).

The proof will be divided into four steps. The main idea is to prove that Y t,·
s ∈ L2(Ω̃)

and ∇xY t,·
s ∈ L2(Ω̃), i.e. that Y t,x

s belongs to the Dirichlet space d̃, ∀t ∈ [0, T ], ∀s ∈ [t, T ],
and that Equation 4.1 has a well defined solution. After that, the result follows easily in
the last step of the proof. The proof techniques are mainly those of [19] and [2]. The first
of these papers [19] gives a similar proof for weak differentiability for BSDEs with Lipschitz
continuous generator in x and z and m = d. The second of these papers [2] contains results
and techniques for working with quadratic BSDEs and BSDEs satisfying a random Lipschitz
condition.

Proof. Step 1: Let φ : Rm → R be a infinitely continuously differentiable and nonnegative
function with support in the unit ball and

∫
Rm φ(x)dx = 1. Then the functions, known as

mollifiers, defined by φn(x) = nmφ(nx), n ≥ 1 has the same properties for all n, only that
the support is vanishing as n→∞. By convolutions, define the functions





bn(t, x) = (b ∗ φn)(t, x) =
∫

Rm
b(t, x− ξ)φn(ξ)dξ,

σn(t, x) = (σ ∗ φn)(t, x) =
∫

Rm
σ(t, x− ξ)φn(ξ)dξ,

gn(x) = (g ∗ φn)(x) =
∫

Rm
g(x− ξ)φn(ξ)dξ.

(4.2)
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It is known that bn, σn and gn are in C∞, ∀n ∈ Z+ and converges uniformly to b, σ and
g and that ∇xbn, ∇xσn and ∇xgn converges dx-a.e. to ∇xb, ∇xσ and ∇xg as n → ∞[9].
Consider for (t, x, n) ∈ [0, T ]× Rm × Z+ and s ∈ [t, T ] the sequence of FBSDE(bn, σn, gn, f)
with corresponding solution (Xt,x,n, Y t,x,n, Zt,x,n).

First, consider the convergence for Xt,x,n
s . Let

∆Xt,x,n
s := Xt,x,n

s −Xt,x
s .

The difference satisfies

∆Xt,x,n
s =

∫ s

t
(bn(r,Xt,x,n

r )− b(r,Xt,x
r ))dr +

∫ s

t
(σn(r,Xt,x,n

r )− σ(r,Xt,x
r ))dWr.

By using Theorem 4.7 it follows that for all p ≥ 2, ∃C > 0 such that

E

[
sup
s∈[t,T ]

|∆Xt,x,n
s |p

]
≤ CE

[∫ T

0
[|bn(t, 0)− b(t, 0)|p + |σn(t, 0)− σ(t, 0)|p]dt

]

→ 0 as n→∞.
(4.3)

Here the uniform constant C exists since it only depends on p, T and the Lipschitz bounds for
b, bn, σ and σn. The Lipschitz bounds of bn and σn isn’t higher than that of b and σ and p and
T are fixed. Further the convergence in (4.3) is bounded. By assumption, b(t, 0) and σ(t, 0)
are bounded for all t ∈ [0, T ]. The same holds for bn(t, 0) and σn(t, 0), ∀(n, t) ∈ Z+ × [0, T ].
The coefficients bn and σn converges uniformly to b and σ as n→∞.

Let




∆Y t,x,n
s := Y t,x,n

s − Y t,x
s ,

∆Zt,x,ns := Zt,x,ns − Zt,xs ,

∆gt,x,n := gn(Xt,x,n
T )− g(Xt,x

T ).

The difference process (∆Y t,x,n
s ,∆Zt,x,ns ) satisfies the BSDE(∆g(Xt,x

T ), f̂n) with generator

f̂n := f(s,Xt,x,n
s , Zt,x,ns )− f(s,Xt,x

s , Zt,xs )

= f(s,Xt,x,n
s , Zt,x,ns )− f(s,Xt,x

r , Zt,x,ns ) + f(s,Xt,x
s , Zt,x,ns )− f(s,Xt,x

s , Zt,xs ).

Line integral transformations are used, to show that the generator satisfies a random
Lipschitz condition. The chain rule gives,

f(s,Xt,x,n
s , Zt,x,ns )− f(s,Xt,x

s , Zt,x,ns ) =
∫ 1

0

d

dθ
f(s,Xt,x

s + θ(Xt,x,n
s −Xt,x

s ), Zt,x,ns )dθ

=
∫ 1

0
∇xf(s,Xt,x

s + θ(Xt,x,n
s −Xt,x

s ), Zt,x,ns )dθ∆Xt,x,n
s

:= Jns ∆Xt,x,n
s
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and similarly

f(s,Xt,x
s , Zt,x,ns )− f(s,Xt,x

s , Zt,xs ) =
∫ 1

0
∇zf(s,Xt,x

s , Zt,xs + θ(Zt,x,ns − Zt,xs ))dθ∆Zt,x,ns

:= Hn
s ∆Zt,x,ns .

Hence

f̂n(s, v) = Hn
s v + Jns ∆Xt,x,n

s .

The generator clearly satisfies the random Lipschitz condition,

|f̂n(s, v)− f̂n(s, v′)| ≤ Hn
s |v − v′|

for all (s, v, v′) ∈ [t, T ]× Rd × Rd. Now, by assumption and the mean value theorem,

Hn
s =

∫ 1

0
∇zf(s,Xt,x

s , Zt,xs + θ(Zt,x,ns − Zt,xs ))dθ

≤ C

∫ 1

0
(1 + |Zt,xs + θ(Zt,x,ns − Zt,xs )|)dθ

= C(1 + |Zt,xs + ξ(Zt,x,ns − Zt,xs )|)

≤ C(1 + |Zt,xs |+ |Zt,x,ns |)

(4.4)

for some 0 ≤ ξ ≤ 1 and for each n ∈ Z+. Lemma 4.2 states that
∫ ·

0 Z
t,x
r dWr and

∫ ·
0 Z

t,x,n
r dWr

are BMO-martingales ∀n ∈ Z+ and it follows from (4.4) that so is also
∫ ·

0 H
n
r dWr, ∀n ∈ Z+.

Next, a uniform bound for the BMO-norms of
∫ ·

0 Z
t,x,n
r dWr, are sought for all n ∈ Z+.

By Lemma 4.2 the BMO-norms only depends on gn(Xt,x,n
T ), f(s,Xt,x,n

s , 0), s ∈ [t, T ], and
T − t. The terminal function g is bounded, and the mollifiers φn integrates to one, hence
the convolution (4.2) does not increase the bound. It follows that the |gn| are uniformly
bounded. Next, by the assumption |f(s, x, z)| ≤ C(1 + |z|2) it follows that |f(s,Xt,x,n

s , 0)| is
uniformly bounded. Finally, T − t is the same for all n. It follows that the BMO-norms of
‖ ∫ ·0 Zt,x,nr dWr‖BMO < β, for some β ≥ 0, ∀n ∈ Z+. Therefore the same holds for

∫ ·
0 H

n
r dWr

from the estimate (4.4).
Now, the moment estimate Lemma 4.1 will be applied on ∆Y t,x,n and ∆Zt,x,n. The

constants Cn > 0 and qn > 1, appearing in every estimation of ∆Y t,x,n and ∆Zt,x,n, ∀n ∈ Z+,
only depends on p, T − t and the BMO-norms. Since a uniform bound of the BMO-norms
has been proved, it follows that qn and Cn, are uniformly bounded by some constants C > 0
and q > 1. Lemma 4.1 therefore gives that, for any p > 1 and every n ∈ Z+ there exists
constants q > 1 and C > 0 such that

E

[
sup
r∈[t,T ]

|∆Y t,x,n
r |2p

]
+ E

[(∫ T

t
|∆Zt,x,nr |2dr

)p]

≤ C
(
E
[|∆gt,x,n|2pq]+ E

[
(
∫ T

t
|Jnr ∆Xt,x,n

r |dr)2pq

])1/q
(4.5)
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First, by Lemma 4.8

E
[|∆gt,x,n|2pq] ≤ CE

[
|gn(Xt,x,n

T )− gn(Xt,x
T )|2pq + |gn(Xt,x

T )− g(Xt,x
T )|2pq

]

→ 0 as n→∞.

The convergence is bounded and follows since gn → g, Xt,x,n
s → Xt,x

s from (4.3) and
the boundedness of g and gn. The differentiability of f in x and assumption |f(t, x, z) −
f(t, x̂, z)| ≤ C(1 + |z|)|x− x̂| implies that

|∇xf(t, x, z)| ≤ C(1 + |z|). (4.6)

Second, by (4.6), Cauchy-Schwartz inequality and using the fact that

∫ T

t
|f(r)|pdr ≤ (T − t) sup

r∈[0,T ]
|f(r)|p (4.7)

it follows that

E
[
(
∫ T

t
|Jnr ∆Xt,x,n

r |dr)2pq

]

≤ CE
[
(
∫ T

t
(1 + |Zt,x,nr |)2dr)2pq

]1/2

E

[
sup
r∈[t,T ]

|∆Xt,x,n
r |4pq

]1/2

→ 0 as n→∞.

(4.8)

The first factor of (4.8) is uniformly bounded, since it can be estimated by Lemma 4.1, with
uniform constants C and q by the same arguments as above. The convergence to zero of the
second factor follows from (4.3).

It has now been proved that Y t,x,n → Y t,x in S∞(R) and that Zt,x,n → Zt,x in H∞(Rd).
Recall from Section 3.2 that h : Rm → R is a, continuous positive function satisfying∫
Rm h(x)dx = 1 and

∫
Rm |x|2h(x)dx < ∞. It follows that such a function must be bounded.

Both Y t,x,n
s and Y t,x

s are in S∞(R) by Proposition 4.3 and hence bounded, for almost all
s ∈ [t, T ], almost surely. Now, by bounded convergence

lim
n→∞E

[∫

Rm
|Y t,x,n
s − Y t,x

s |2ph(x)dx
]

= 0.

Hence, Y t,·,n
s → Y t,·

s in L2p(Ω̃) ⊂ L2(Ω̃), ∀s ∈ [t, T ].

Step 2: The functions b, σ and g are all Lipschitz continuous. Hence, they are continuously
differentiable almost everywhere, i.e., the weak partial derivatives equals the classical partial
derivatives except at a set of Lebesgue measure zero.

The question of this step in the proof is to prove that the solution (Φt,x
s ,Ψt,x

s ,Γt,xs ), to the
variational equation ∇FBSDE(b, σ, g, f), is well defined, i.e., does not depend on Borel (dx
a.e.) versions of the weak gradients ∇xb,∇xσ and ∇xg. For all s ∈ [t, T ], let ∇xb1 = ∇xb2,
∇xσ1 = ∇xσ2 and ∇xg1 = ∇xg2 except at a set N ⊂ [0, T ]×Rm with Lebesgue measure zero.
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Let (Φ1
i,s,Ψ

1
i,s,Γ

1
i,s) and (Φ2

i,s,Ψ
2
i,s,Γ

2
i,s), i = 1, . . . ,m, be the solutions to ∇iFBSDE(b, σ, g, f),

i = 1, . . . ,m, with versions (∇xb1,∇xσ1,∇xg1) and (∇xb2,∇xσ2,∇xg2) of the weak gradients
respectively. The equation must be considered componentwise to be able to use moment
estimate Lemma 4.1. The superscript t,x is omitted for notational simplicity. It will be
proved that the solutions are identical.

The uniqueness of Φ1
s and the identity Φ1

s = Φ2
s in S2(Rm×m), has been proved under the

non-degeneracy assumption (3.2) [19]. Denote the coefficients of Φt,x
i,s ,





α(r, φ) = ∇xb(r,Xt,x
r )φ,

β(r, φ) =
∑d

j=1∇xσj(r,Xt,x
r )φ,

for (ω, r, φ) ∈ Ω × [t, T ] × Rm×m. It is known that the Frobenius norm (2.3) is sub-
multiplicative, i.e., it satisfies |AB| = |A||B|. The coefficients therefore satisfies

|α(t, φ)− α(t, φ̂)| ≤ |∇xb(r,Xt,x
r )||φ− φ̂|

≤ m2C2|φ− φ̂|.
and

|β(t, φ)− β(t, φ̂)| ≤ |∑d
j=i∇xσj(r,Xt,x

r )||φ− φ̂|

≤ dm2C2|φ− φ̂|.
The bounds follows since each element in the matrices ∇xσj and ∇xb are bounded by the
common Lipschitz constant C of b and σ. The coefficients are hence Lipschitz continuous.
Theorem 4.7 can be applied to conclude that Φt,x

i,s := Φ1
i,s = Φ2

i,s, i = 1, . . . ,m, are unique in
S∞(Rm). It remains to prove that Ψ1

i,s = Ψ2
i,s and Γ1

i,s = Γ2
i,s and that they are unique in

S∞(R1×m) and H∞(Rd×m) respectively, and hence well defined.
Let





∆Ψi,s := Ψ1
i,s −Ψ2

i,s,

∆Γi,s := Γ1
i,s − Γ2

i,s,

∆ξi := (∇xg1(Xt,x
T )−∇xg2(Xt,x

T ))Φt,x
i,T .

The process (∆Ψi,s,∆Γi,s) satisfies BSDE(∆ξi, f̂) for

f̂(s, v) = ∇zf(s,Xt,x
s , Zt,xs )v.

It satisfies the random Lipschitz condition:

|f̂(s, v)− f̂(s, v̂)| ≤ ∇zf(s,Xt,x
s , Zt,xs )|v − v̂|

≤ C(1 + |Zt,xs |)|v − v̂|
∀(s, v, v̂) ∈ [t, T ]× Rm×m × Rm×m, by assumption. From Lemma 4.2

∫ ·
0 Z

t,x
r dWr is a BMO-

martingale. It then follows from Lemma 4.1 and Cauchy Schwartz inequality that for any
p > 1 there exist a q > 1 and C > 0 such that:
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E

[
sup
r∈[t,T ]

|∆Ψi,r|2p
]

+ E

[(∫ T

t
|∆Γi,r|2dr

)p]

≤ CE
[
|∇xg1(Xt,x

T )−∇xg2(Xt,x
T )|4pq

]1/(2q)
E
[
|Φt,x
i,T |4pq

]1/(2q)

= 0.

The first factor vanishes since ∇xg1(x)−∇xg2(x) = 0 for almost all x ∈ Rm and since Xt,x
T

has a density from Theorem 3.3. The second factor is finite since Φt,x
i,T has finite moments.

Hence for all s ∈ [t, T ] and i = 1, . . . ,m, Ψt,x
i,s := Ψ1

i,s = Ψ2
i,s and Γt,xi,s := Γ1

i,s = Γ2
i,s.

To be able to conclude that the solution (Φ,Ψ,Γ) is unique in S∞(Rm×m)×S∞(R1×m)×
H∞(Rd×m) and hence well defined, the condition (2.13) of Theorem 2.2 must be checked for
p > 1 and every component. First,

E
[
|∇xg(Xt,x

T )Φt,x
i,T |p

]
<∞, i = 1, . . . ,m,

since g is Lipschitz continuous and hence has bounded partial derivatives and Φt,x
i,T has finite

moments. Denote the generator of ∇iFBSDE(b, σ, g, f), by f i : Ω × [0, T ] × Rd×m → R. It
can be identified from (4.1). It satisfies

f i(r, 0) = ∇xf(r,Xt,x
r , Zt,xr )Φt,x

i,r .

Using Cauchy Schwartz inequality, (4.6) and (4.7) the second term of (2.13) can be esti-
mated by

E

[(∫ T

0
|f i(r, 0)|dr

)p]
= E

[(∫ T

0
|∇xf(r,Xt,x

r , Zt,xr )Φt,x
i,r |dr

)p]

≤ E
[(∫ T

0
|∇xf(r,Xt,x

r , Zt,xr )|2dr
)p]1/2

E

[(∫ T

0
|Φt,x
i,r |2dr

)p]1/2

≤ E
[(∫ T

0
|C(1 + |Zt,xr |)|2dr

)p]1/2

E

[
T sup
r∈[t,T ]

|Φt,x
i,r |2p

]1/2

<∞, i = 1, . . . ,m.

The finiteness of the first factor follows since Zt,x ∈ H∞(Rd) from Proposition 4.3. The
finiteness of the second factor follows from Theorem 4.7. It holds for any p > 1 and hence
(Ψt,x,Γt,x) is unique in S∞(R1×m)×H∞(Rd×m) from Theorem 2.2. It can be concluded that
(Ψt,x

s ,Γt,xs ) are well defined processes.

Step 3: Again consider the approximating functions bn, σn and gn. Define, for (t, x, n) ∈
[0, T ] × Rm × Z+ and s ∈ [t, T ], an approximating sequence ∇FBSDE(bn, σn, gn, f) of vari-
ational equations with solution (Φt,x,n,Ψt,x,n,Γt,x,n). It will be proved in this step that
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Φt,x,n → Φt,x in S∞(Rd×m), Ψt,·,n
r → Ψt,·

r in L2(Ω̃) and that Γt,x,n → Γt,x in H∞(Rd×m) as
n→∞.

It has been proved [19] that, ∀(t, x) ∈ [0, T ]× Rm,

lim
n→∞E

[
sup
s∈[t,T ]

|Φt,x,n
s − Φt,x

s |2p
]

= 0 (4.9)

for p = 1. In this proof p ≥ 1 is needed. The generalization of the proof [19] is a matter of
notation and will not be presented.

Let (Φt,x,n
i ,Ψt,x,n

i ,Γt,x,ni ) be the solutions to∇iFBSDE(bn, σn, gn, f), i = 1, . . . ,m. Denote
the difference by





∆Ψt,x,n
i,s := Ψt,x,n

i,s −Ψt,x
i,s ,

∆Γt,x,ni,s := Γt,x,ni,s − Γt,xi,s ,

∆ξt,x,ni := ∇xgn(Xt,x,n
T )Φt,x,n

i,T −∇xg(Xt,x
T )Φt,x

i,T

The process (∆Ψt,x,n
i,s ,∆Γt,x,ni,s ) satisfies BSDE(∆ξt,x,ni , f̂ni ) for

f̂ni (r, v) := ∇xf(r,Xt,x,n
r , Zt,x,nr )Φt,x,n

i,r −∇xf(r,Xt,x
r , Zt,xr )Φt,x

i,r

+(∇zf(r,Xt,x,n
r , Zt,x,nr )−∇zf(r,Xt,x

r , Zt,xr ))Γt,xi,r

+∇zf(r,Xt,x,n
r , Zt,x,nr )v.

The generator f̂ni satisfies a random Lipschitz condition

|f̂ni (t, v)− f̂ni (t, v̂)| = ∇zf(r,Xt,x,n
r , Zt,x,nr )|v − v̂|

≤ C(1 + |Zt,x,nr |)|v − v̂|

by assumption. Recall from Lemma 4.2 that
∫ ·
t Z

t,x,n
r dBr is a BMO-martingale and that its

BMO-norms are uniformly bounded from step 1. Hence moment estimate Lemma 4.1 can be
applied with uniform bounds for the constants C and q together with Lemma 4.8. For any
p > 1 there exist constants q > 1 and C > 0 such that, ∀n ∈ Z+:

E

[
sup
r∈[t,T ]

|∆Ψt,x,n
i,r |2p

]
+ E

[(∫ T

t
|∆Γt,x,ni,r |2dr

)p]

≤ C
(
E
[
|∆ξt,x,ni |2pq

]
+ It,x,ni + J t,x,ni

)1/q
,

(4.10)

where
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It,x,ni := E

[(∫ T

t
|(∇zf(r,Xt,x,n

r , Zt,x,nr )−∇zf(r,Xt,x
r , Zt,xr ))Γt,xi,r |dr

)2pq
]

J t,x,ni := E

[(∫ T

t
|∇xf(r,Xt,x,n

r , Zt,x,nr )Φt,x,n
i,r −∇xf(r,Xt,x

r , Zt,xr )Φt,x
i,r |dr

)2pq
]
.

First, by Lemma 4.8 and Cauchy Schwartz inequality

E
[
|ξt,x,ni |2pq

]
= E

[
|∇xgn(Xt,x,n

T )Φt,x,n
i,T −∇xg(Xt,x

T )Φt,x
i,T |2pq

]

≤ C

(
E
[
|∇xgn(Xt,x,n

T )|4pq
]1/2

E
[
|Φt,x,n
i,T − Φt,x

i,T |4pq
]1/2

+E
[
|∇xgn(Xt,x,n

T )−∇xgn(Xt,x
T )|4pq

]1/2
E
[
|Φt,x
i,T |4pq

]1/2

+ E
[
|∇xgn(Xt,x

T )−∇xg(Xt,x
T )|4pq

]1/2
E
[
|Φt,x
i,T |4pq

]1/2
)

→ 0 as n→∞.

The dominated convergence theorem applies since ∇xg and ∇xgn are bounded by the Lips-
chitz constants of g and gn, ∀n ∈ Z+, respectively and Φt,x,n

i,T and Φt,x
i,T have finite moments,

i = 1, . . . ,m. The convergence to zero follows since Xt,x,n → Xt,x in S∞(Rm), Φt,x,n
i → Φt,x

i

in S∞(Rm×m) from step 1 and ∇xgn → ∇xg for almost all x ∈ Rm. The final value Xt,x
T has

a density by Theorem 3.3 and will hence not attain its values at undefined point of ∇xg.
Next, lets estimate It,x,ni by Lemma 4.8 and Cauchy Schwartz inequality:

It,x,ni ≤ CE

[(∫ T

t
|Γt,xi,r |2dr

)2pq
]1/2

×
(
E

[(∫ T

t
|∇xf(r,Xt,x,n

r , Zt,x,nr )−∇xf(r,Xt,x,n
r , Zt,xr )|2dr

)2pq
]

+ E

[(∫ T

t
|∇xf(r,Xt,x,n

r , Zt,xr )−∇xf(r,Xt,x
r , Zt,xr )|2dr

)2pq
])1/2

→ 0 as n→∞.

The first factor is finite since Γt,xi ∈ H∞(Rd) from step 2. The second factor is by using (4.6)
bounded by

CE

[(∫ T

t
(1 + |Zt,xr |+ |Zt,x,nr |)2dr

)2pq
]
<∞.
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The finiteness follows since Zt,x, Zt,x,n ∈ H∞(Rd) from Proposition 4.3. Dominated conver-
gence, the continuity of ∇xf in x and z and the convergence Xt,x,n → Xt,x in S∞(Rm) and
Zt,x,n → Zt,x in H∞(Rd) implies that limn→∞ I

t,x,n
i = 0.

Finally, limn→∞ J
t,x,n
i = 0, i = 1, . . . ,m, by similar use of Lemma 4.8, Cauchy Schwartz

inequality, the assumptions, convergence results and dominated convergence. Hence, the
columns of Ψt,x,n and Γt,x,n converges to the columns of Ψt,x and Γt,x in S∞(R) and H∞(Rd)
respectively. It follows that Ψt,x,n → Ψt,x in S∞(Rm) and Γt,x,n → Γt,x in H∞(Rd×m) as
n→∞.

The function h, defined in section 3.2, is continuous with integral one and hence bounded.
Moreover Ψt,x,n

r and Ψt,x
r are essentially bounded. It follows from the bounded convergence

theorem that

lim
n→∞E

[∫

Rm
sup
r∈[t,T ]

|Ψt,x,n
r −Ψt,x

r |2ph(x)dx

]
= 0

and in particular Ψt,·,n
s → Ψt,·

s in L2p(Ω̃) ⊂ L2(Ω̃), s ∈ [t, T ].

Step 4: Finally, lets put the results from step 1 and 3 together with Theorem 4.5:




Y t,·,n
s → Y t,·

s ∈ L2(Ω̃) ∀s ∈ [t, T ]

Ψt,·,n
s → Ψt,·

s ∈ L2(Ω̃) ∀s ∈ [t, T ]

∂
∂xi
Y t,x,n
s = Ψt,x,n

i,s 1 ≤ i ≤ m ∀s ∈ [t, T ],∀x ∈ Rm.

Lemma 4.4 states that x 7→ Y t,x
s is Lipschitz continuous, which in turn implies the weaker

condition of absolute continuity of ε 7→ Y t,x+εei
s , 1 ≤ i ≤ m. Hence Y t,·

s ∈ (∩mi=1D̃i) and
∇iY t,x

s is well defined. The convergence then holds with respect to the Dirichlet-d̃ norm

‖ · ‖ed =

[
‖ · ‖2

L2(eΩ)
+

m∑

i=1

‖∇i(·)‖2L2(eΩ)

] 1
2

.

Hence Y t,·
s ∈ d̃. Proposition 3.2 tells that Y t,·

s ∈ d̃ =⇒ Y t,x
s ∈ d ⊂ H1

loc(Rm). Hence (i) is
proved. (ii) follows immediately.

Corollary 4.10. Assume (A). Then for u(t, x) := Y t,x
t it holds that u(t, ·) ∈ H1

loc(Rm) and

Zt,xs = ∇xu(s,Xt,x
s )σ(s,Xt,x

s ) (4.11)

for Lebesgue a.e. s ∈ [t, T ], P-almost surely, where ∇xu is the weak gradient of u.

Proof. First u(t, ·) := Y t,·
t ∈ d ⊂ H1

loc(Rm),∀t ∈ [0, T ] from Theorem 4.9. The corollary holds
from Theorem 4.6 under assumption (A) and the additional requirement that the terminal
function g is twice continuously differentiable and b and σ are continuously differentiable in x.
The approximating coefficients in the proof of the previous theorem satisfies these conditions.
Hence, for n ∈ Z+, Lebesgue a.a. s ∈ [t, T ] and P-a.s.

Zt,x,ns = ∇xun(s,Xt,x,n
s )σn(s,Xt,x,n

s ).
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Since u(t, x) := Y t,x
t and un(t, x) := Y t,x,n

t it holds, from results in the proof of the previous
theorem, that un(t, x) → u(t, x) and ∇xun(t, x) → ∇xu(t, x) in L2(Ω̃). Also, Xt,x,n

s → Xt,x
s

and σn → σ as n→∞. Hence,

∇xun(s,Xt,x,n
s )σn(s,Xt,x,n

s )→ ∇xu(s,Xt,x
s )σ(s,Xt,x

s ) as n→∞.
Moreover Zt,x,n → Zt,x in H∞(Rd) as n→∞. Hence the result holds in the limit. It is easy
to check, by using the Lipschitz condition on u in x and the linear growth condition on σ in
x, that the right hand side of (4.11) is in H∞(Rd).
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Chapter 5

Application to insurance and
finance: Optimal cross hedging

The market for financial derivatives has exploded the last 25 years. Most often the contracts
are written on tradable underlyings such as stocks, grain or oil etc.. In that case the deriva-
tives are priced by creating a replicating portfolio, containing shares of the underlyings such
that the value of the portfolio equals that of the derivative. The fair price of the derivative
is then the same as the cost to create the replicating portfolio. The purpose of buying the
derivative can be either for hedging, speculation or arbitrage purposes [8].

There is an increasing market for derivatives written on indices such as temperature, rain,
snow fall or economic loss or other non-tradable indices. The main purpose to write such
contracts is for insurance or for insurance companies as an alternative to classical reinsurance.
Risks can in such a way be moved to the financial market. Since the indices are non-tradable
it’s impossible to create replicating portfolios to price derivatives written on them. It is also
by the same reason impossible to hedge the risk of the derivative directly. The way to tackle
this is by cross hedging, i.e. to find a strongly correlated and tradable asset and use it for
hedging. It is of course impossible to hedge all risk since the underlying and the correlated
asset are not completely correlated. The market is said to be incomplete.

The approach often taken when pricing and hedging in incomplete markets is that of
maximizing the utility of an investment by choosing an optimal hedging strategy. This is
also the approach taken here. In the first section the assumptions and market model will be
presented and also some examples. In the second the solution approach by solving a FBSDE
is presented. So far nothing has been new but rather taken from [2] and [7]. In the fourth
section the main results of this thesis is applied. An explicit expression for the optimal cross
hedging strategy is derived, in terms of the weak gradient of a FBSDE. The gain of this
is that, European put and call options or other derivatives with non-differentiable payoff
functions can be written.

5.1 Assumptions and market model

Let (Ω,F , {Ft}t∈[0,T ],P), T > 0, be a filtered probability space with a d-dimensional Wiener
process Wt. Ft is the natural filtration of Wt completed by the P-null set of Ω. A financial
derivative with maturity T and payoff function F : Rm → R is written on a m-dimensional
non-tradable risk process X. For x ∈ Rm the dynamics of X is given by:
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Xt = x+
∫ t

0
b(r,Xr)dr +

∫ t

0
σ(r,Xr)dWr t ∈ [0, T ].

The coefficients b : [0, T ] × Rm → Rm and σ : [0, T ] × Rm → Rm×d are assumed to satisfy a
global Lipschitz and linear growth condition, i.e. there exist a C > 0 such that

{ |b(t, x)− b(t, x̄)|+ |σ(t, x)− σ(t, x̄)| ≤ C|x− x̄|,
|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|).

∀(t, x, x̄) ∈ [0, T ] × Rm × Rm. Moreover b(t, 0) and σ(t, 0) are assumed bounded ∀t ∈ [0, T ]
and σ is assumed to satisfy the non-degeneracy condition

ξ∗σ(t, x)σ∗(t, x)ξ ≥ C|ξ|2, ∀(t, x, ξ) ∈ [0, T ]× Rm × Rm (5.1)

for some C > 0. The random income at time T of maturity of the derivative is F (XT ). F
is assumed to be bounded and Lipschitz continuous. The boundedness of F seems unnatural
for many derivatives but the bound can be chosen arbitrarily high and doesn’t imply any
problems in practice.

Conditioned on the information Xt = x, for x ∈ Rm, the non-tradable process will be
denoted Xt,x

s , and satisfy:

Xt,x
s = x+

∫ s

t
b(r,Xt,x

r )dr +
∫ s

t
σ(r,Xt,x

r )dWr, s ∈ [t, T ].

Since X is non-tradable it’s impossible to hedge the risk associated with the derivative
directly. Therefore a correlated and tradable asset price process is used to partially hedge
the risk. The k-dimensional asset price process is given by:

Sit = si0 +
∫ t

0
Sir(αi(r,Xr)dr + βi(r,Xr)dWr), i = 1, . . . , k.

Here αi and βi denotes the i:th rows of the functions α : [0, T ]×Rm → Rk and β : [0, T ]×Rm →
Rk×d, i = 1, . . . , k. The coefficient α is assumed to be bounded and β is assumed to satisfy
the condition

εIk×k ≤ β(t, x)β∗(t, x) ≤ KIk×k (5.2)

for some 0 < ε < K, ∀(t, x) ∈ [0, T ] × Rm, where β∗ is the transpose of β and Ik×k is the
identity matrix in Rk. It implies that β(t, x)β∗(t, x) is invertible and bounded. Both α and
β satisfy a global Lipschitz condition:

|α(t, x)− α(t, x̂)|+ |β(t, x)− β(t, x̂)| ≤ C|x− x̂|
∀(t, x, x̂) ∈ [0, T ] × Rm × Rm, C > 0. Moreover α and β are assumed to be continuously
differentiable in x. Notice that X and S are driven by the same Wiener process. Their
correlation is determined by σ and β.

To rule out arbitrage opportunities the assumption d ≥ k must hold, i.e. there must be
more sources of uncertainty than number of tradable assets. When all the assumptions above
holds assumption (B) will be said to be fulfilled.

The following example is taken from [2].
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Example 5.1. A company producing kerosene (ke) from crude oil (co) is sensitive against
sudden increases in the price of crude oil. It therefore invests in so called crack spreads.
They are European options on the difference of the crude oil price and the kerosene price,
i.e. derivatives with payoff function F (Xco

T , X
ke
T ) = [Xco

T −Xke
T −K]+ where K is the strike

price. T is the time to maturity. The market for trading kerosene is not liquid enough to
warrant future contracts on it. Therefore some liquid and strongly correlated asset must be
used to partially hedge the risk associated with the crack spread. Heating oil (ho) has this
property and it is liquid. Here cross hedging applies.

In [2] the following model for the indices is presented:

dXke
t = Xke

t (b1dt+ γ2dW
1
t + γ3dW

2
t + γ4dW

3
t )

dXco
t = Xco

t (b2dt+ γ1dW
1
t )

dShot = Shot (b3dt+ β1dW
1
t + β2dW

2
t )

for b1, b2, b3 ∈ R, γ1, γ2, γ3, γ4, β1, β2 ∈ R \ {0} and t ∈ [0, T ]. With the result of chapter 4
an explicit expression of the optimal cross hedging strategy can be obtained. This was not
possible before since F is not continuously differentiable. See the last section below.

An investment strategy is a k-dimensional predictable process λ that satisfies
∫ t

0 λ
i
r
dSir
Sir

<

∞, i = 1, . . . , k. λit is the value of the portfolio invested in the i:th asset at time t ∈ [0, T ].
The total gain from investing according to λ in the time interval [t, s] is Gλ,ts =

∑k
i=1

∫ s
t λ

i
r
dSir
Sir

.

The gain conditioned on Xt = x, for x ∈ Rm, is denoted Gλ,t,xs and is given by:

Gλ,t,xs =
k∑

i=1

∫ s

t
λis[αi(r,X

t,x
r )dr + βi(r,Xt,x

r )dWr].

Let At,x denote the space of all strategies λ satisfying E[
∫ T
t |λrβ(r,Xt,x

r )|2dr] < ∞ and

such that the family {e−ηGλ,t,xτ : τ ∈ [t, T ] is a stopping time} is uniformly integrable, η > 0.
Strategies in At,x are called admissible.

It seems natural to seek for an optimal strategy that in some sense maximizes the gain
of the investment. The approach here is to maximize the expected exponential utility. The
exponential utility function is given by:

U(y) = −e−ηy.
The risk aversion coefficient η > 0, y ∈ R. The maximal expected utility, conditioned on
Xt = x, for risk level x ∈ Rm at time t ∈ [0, T ] and wealth v ∈ R, of an investment without
the derivative is

V 0(t, x, v) := sup
λ∈At,x

E
[
U(v +Gλ,t,xT )

]
.

In terms of stochastic control theory V 0 is called the value function of a stochastic control
problem. It has been shown in [7] that there exist an almost surely unique optimal strategy
π ∈ At,x such that

V 0(t, x, v) = E
[
U(v +Gπ,t,xT )

]
.
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Remark 5.2. The exponential utility function punishes losses strongly and rewards gains
moderately. Hence the strategy π is the strategy that minimizes risk for losses. π does of
course depend on the risk aversion coefficient η. The smaller η > 0 is the more rewarded
are high gains but more likely are losses. U is a concave utility function and all such are
risk averse. On the other side convex utility functions are risk-seeking, i.e. very high gains
are preferred even though they are unlikely to occur. A linear utility function maximizes the
expected value and the concept of utility is gone.

If the portfolio contains the derivative F (XT ) the conditional maximal expected utility
and value function becomes

V F (t, x, v) := sup
λ∈At,x

E
[
U(v +Gλ,t,xT + F (Xt,x

T ))
]
.

Also in this case there exist an almost surely unique investment strategy π̂ that satisfies

V F (t, x, v) = E
[
U(v +Gbπ,t,xT + F (Xt,x

T ))
]
.

The difference of the two strategies

∆ = π̂ − π
is called the derivative hedge and is used to hedge the derivative. In a later subsection
explicit expression for the derivative hedge will be derived via the distributional gradient of a
quadratic FBSDE. It is a generalization of the classical ∆-hedge in the Black-Scholes model.
In the case of a complete market, i.e. when d = k and S = R, derivative hedge coincides
with Black-Scholes ∆-hedge. Next, how shall the derivative be priced? This is solved by
calculating the so called indifference price p(t, x) at time t conditioned on Xt = x and wealth
v, given by:

V F (t, x, v − p(t, x)) = V 0(t, x, v).

It is the price that makes the buyer of the derivative indifferent, in a utility point of view,
to wether she should buy the derivative or not. It will later be seen that the derivative
hedge can be expressed in terms of the distributional gradient of the indifference price p(t, x).
The mathematical problem to find the optimal investment strategy is an optimal stochastic
control problem. It is often tackled by solving the so called Hamilton-Jacobi-Bellman PDE.
The approach here is taken from [2] and [7] and uses FBSDEs.

5.2 Solution to the optimal cross hedging problem via a FB-
SDE

In this section a FBSDE will be used to find explicit expressions for the indifference price
and optimal cross hedging strategies presented above. The results have been proved in [2]
and [7]. Fix (t, x) ∈ [0, T ] × Rm. Assumption (5.2) implies that β(t, x)β∗(t, x) is invertible
hence the mapping β(t, x) : Rk → Rd is one-to-one. Recall that a trading strategy λt is a
k-dimensional process, corresponding to the value of a portfolio invested in the i:th asset at
time t. In the solution approach here the d-dimensional image strategies given by λtβ(t, x)
will be considered instead. Let
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C(t, x) =
{
sβ(t, x) : s ∈ Rk

}
.

be the constraint set for the image strategies. The matrix β(t, x) is not necessarily onto.
Hence C(t, x) is in fact a constraint set. It is closed and convex. Let

ϑ(t, x) = β∗(t, x)(β(t, x)β∗(t, x))−1α(t, x).

The process ϑ is bounded since α and β are bounded and ββ∗ ≤ KIk×k from assumption
5.2. Let dist(z, C) = min{|z − u| : u ∈ C} be the distance of a vector z ∈ Rd to the closed
and convex set C. Define the generator of a FBSDE by:

f : [0, T ]× Rm × Rd → R, (t, x, z) 7→ zϑ(t, x) +
1
2η
|ϑ(t, x)|2 − η

2
dist2(z +

1
η
ϑ(t, x)), C(t, x)).

There exist a unique solution to the FBSDE

Ŷ t,x
s = F (Xt,x

T )−
∫ T

s
f(r,Xt,x

r , Ẑt,xr )dr −
∫ T

s
Ẑt,xr dWr,

s ∈ [t, T ], since f has quadratic growth in z. The value function, defined in the previous
section, for an investment with the derivative is given by:

V F (t, x, v) = −e−η(v−bY t,xt ).

Let
∏
C(t,x)(z) denote the orthogonal projection of z ∈ Rd onto the subspace C(t, x).

Conditioned on Xt = x the optimal cross hedging strategy is given by:

π̂sβ(s,Rt,xs ) =
∏

C(t,x)

[Ẑt,xs +
1
η
ϑ(s,Xt,x

s )],

s ∈ [t, T ]. Analogously, an investment without the derivative give rise to the FBSDE:

Y t,x
s = −

∫ T

s
f(r,Xt,x

r , Zt,xr )dr −
∫ T

s
Zt,xr dWr,

with value function

V 0(t, x, v) = −e−η(v−Y t,xt )

and optimal strategy:

πsβ(s,Rt,xs ) =
∏

C(t,x)

[Zt,xs +
1
η
ϑ(s,Xt,x

s )],

s ∈ [t, T ]. The projection operator is linear hence the derivative hedge is given by

∆sβ(s,Xt,x
s ) =

∏

C(t,x)

[Ẑt,xs − Zt,xs ].

Recall the definition of the indifference price p(t, x) and notice that,
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V F (t, x, v − p(t, x)) = −e−η(v−p(t,x)−bY t,xt ) = −e−η(v−Y t,xt ) = V 0(t, x, v)

which in turn implies that

p(t, x) = Y t,x
t − Ŷ t,x

t .

5.3 Explicit hedging strategy using the weak price gradient

In this section the results on weak differentiability of FBSDE from Chapter 4 will be applied
to the optimal cross hedging problem. The major advantage of the new results is that the
payoff function no longer must be continuously differentiable. This implies that put and call
options can be written on the underlying and explicit hedging strategies derived via the weak
gradient of the indifference price. Another is that the coefficients of the non-tradable asset
process no longer need to be differentiable but only Lipschitz continuous with linear growth.

Theorem 5.3. Under assumption (B) the functions û(t, x) := Ŷ t,x
t and u(t, x) := Y t,x

t are
weakly differentiable with respect to x.

Proof. Assumption (B) implies assumption (A) of chapter (4). The trickier parts of the proof
concerns the generator and was made in [2]. Theorem 4.9(i) applies since (A) holds.

Since p(t, x) = Y t,x
t − Ŷ t,x

t the following corollary holds.

Corollary 5.4. Under assumption (B) the indifference price p(t, x) is weakly differentiable
with respect to x.

Theorem 5.5. Assume (B). Then the derivative hedge, for risk level x ∈ Rm at time t ∈
[0, T ], is given by

∆(t, x) = −
∏

C(t,x)

[∇xp(t, x)σ(t, x)]β∗(t, x)(β(t, x)β∗(t, x))−1

for (t, x) ∈ [0, T ] × Rm, where ∇xp is the price gradient considered in the weak sense and∏
C(t,x)(z) is the orthogonal projection of z ∈ Rd onto C(t, x) := {sβ(t, x) : s ∈ Rk}.

Proof. Recall that

∆sβ(s,Xt,x
s ) =

∏

C(t,x)

[Ẑt,xs − Zt,xs ],

which implies

∆(t, x) =
∏

C(t,x)

[Ẑt,xt − Zt,xt ]β∗(t, x)(β(t, x)β∗(t, x))−1.

Corollary 4.10 implies that Ẑt,xt = ∇xû(t, x)σ(t, x) and Zt,xt = ∇xu(t, x)σ(t, x) in the
distributional sense. Hence,

Ẑt,xt − Zt,xt = (∇xû(t, x)−∇xu(t, x))σ(t, x) = ∇x(Ŷ t,x
t − Y t,x

t︸ ︷︷ ︸
=−p(t,x)

)σ(t, x)

and the result follows.
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Chapter 6

Conclusion and discussion

The results of this thesis has made it theoretically possible to compute the derivative hedge in
the cross hedging problem, when the payoff function is Lipschitz continuous and bounded and
under the restriction of a non-degenerate risk process. Also, the differentiability assumption
on the coefficients of the SDE, for the underlying, has been relaxed. The price for this was
that the strategies are expressed in term of the weak gradient of the solution to a backward
stochastic differential equation instead of a classical gradient. What this means numerically
must be further explored. The boundedness of the payoff function is not a problem in practice
since the bound can be set arbitrarily high.

The FBSDE approach has the advantage that it can be used in multi dimensions, i.e. both
the tradable and non-tradable assets can theoretically be in any finite number of dimensions.
Numerically it is though a more complicated approach. An alternative and classical approach
is to solve the Hamilton-Jacobi-Bellman (HJB) PDE. It is the main tool in optimal stochastic
control theory. In [1] an explicit solution to the HJB-PDE was derived for the cross hedging
problem when both the tradable and the non-tradable asset were of dimension one. After
manipulations they showed that it could be solved via Feynman-Kac’s formula and hence by
simulations of SDEs. The approach holds when the underlying is either non-degenerate or
a geometric Brownian motion. Numerically it is about simulation of SDEs, but it is limited
to one dimension. Other less recent methods is mostly for pricing and does not give optimal
hedging strategies in a dynamic way, if at all. For the financial results to be useful suitable
numerics must be used to compute the solution to the variational equations (4.1).

Now, to the mathematical part of this thesis, chapter 4. Are the assumptions contained
in (A) of chapter 4 necessary? The differentiability assumption on the generator f is to our
judgment necessary. When trying to relax it, a joint non-degeneracy condition on the process
(X,Z) would be needed to conclude that

E
[∫ T

0
|∇zf1(r,Xr, Zr)−∇zf2(r,Xr, Zr)|2dr

]
= 0 (6.1)

where ∇zf1 and ∇zf2 only differs on a null set. But Zt is determined by v(t,Xt), where v is a
deterministic function. Hence (X,Z) will be limited to take values in a null set of Rm+d, i.e.,
along a curve. The non-degeneracy condition of the forward SDE is probably not necessary.
Great effort has been made by the author to relax it. To get around the degeneracy problem,
a FBSDE with solution (X̃, Ỹ , Z̃), having random initial value with a density has been used.
In such way corresponding step 1-3 of Theorem 4.9 has been proved for the new equation.
For FBSDEs with Lipschitz continuous generator it is easy by using results in [5] to conclude
that the solutions to the corresponding approximating variational equations with solutions
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(Φ̃n, Ψ̃n, Γ̃n) are the weak gradients of (X̃n, Ỹ n, Z̃n). For quadratic generators the framework
of [5], [4] or even [18] is not covered. Such a proof would involve Dirichlet forms or Malliavin
calculus, if it is possible. One other possibility to expand the results would be to let the
generator f depend on Y . Then the result could be used for regularity and representation
results for PDEs, as in [19]. That would result in even lengthier proofs. Since the generator
f in the cross hedging problem does not depend on Y the theory here is restricted to that
case.

In this thesis the weak differentiability has been proved by weakening results on classical
differentiability. This is in some sense unnatural since classical differentiability is something
stronger and feels unnecessary to prove in order to later weaken it. An alternative approach
would be to start with nothing and prove weak differentiability directly. Such an approach
would contain Malliavin calculus instead of the closely related theory of Dirichlet forms and
Dirichlet spaces use here. The Malliavin derivative is the infinite dimensional distributional
derivative in ω for some probability space, in this case the Wiener space. In fact, the Malliavin
derivative {DtYt; 0 ≤ t ≤ T} is a version of {Zt; 0 ≤ t ≤ T} [12]. By the Malliavin chain
rule the connection between Y and Z from chapter 4 is obtained [2]. Further X is Malliavin
differentiable and then u(X) is Malliavin differentiable if u is Lipschitz continuous [18]. Hence
if u(t, x) := Y t,x

t is Lipschitz continuous u(s,Xt,x
s ) is Malliavin differentiable, which in turn

implies that u is differentiable in the weak sense from the Malliavin chain rule. If it is possible
to obtain the representation of the weak gradients, in terms of the solution to a variational
equation, as in Theorem 4.9(ii) using Malliavin calculus and a direct approach remains to be
explored.
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[9] Hörmander, L. (1983). The Analysis of Linear Partial Differential Operators 1. Springer.

[10] Imkeller, P. (2008). Malliavin’s Calculus and Applications in Stochastic Control and
Finance. Non-published lecture notes for a course in Warschaw the spring 2008.

[11] Karoui, N.E. and Mazliak, L. (1997). Backward Stochastic Differential Equations. Long-
man.

[12] Karoui, N.E., Peng, S. and Quenez, M.C. (1997). Backward stochastic differential equa-
tions in finance. Mathematical Finance 7 1–71.

[13] Kobylanski, M. (2000). Backward stochastic differential equations and partial differential
equations with quadratic growth. Annals of Probability 28 558–602.

[14] Krylov, N.V. (1980). Controlled diffusion processes. Springer.

[15] Larsson, S. and Thome, V. (2005). Partial Differentiable Equations with Numerical Meth-
ods. Springer.

35



[16] Ma, J. and Yong, J. (1999). Forward-Backward Stochastic Differential Eqautions and
Their Applications. Springer.

[17] Morlais, M.A. (2008). Quadratic BSDEs driven by a continuous martingale and appli-
cations to the utility maximization problem. arXiv:math/0610749v3 [math.PR].

[18] Nualart, D. (2006). The Malliavin Calculus and Related Topics, second edition. Springer.

[19] N’Zi, M., Ouknine, Y. and Sulem, A. (2006). Regularity and representation of viscosity
solutions of partial differential equations via backward stochastic differential equations.
Stochastic Processes and Their Applications 116 1319–1339.

[20] Øksendal, B. (2003). Stochastic Differential Equations, an Introduction with Applica-
tions, sixth edition. Springer.

[21] Pardoux, E. and Peng, S. (1990). Adapted solution of a backward stochastic differential
equation. Systems & Control Letters 14 55–61.

36


